Inverse square law of gravitation and force between two spheres

Click For Summary

Homework Help Overview

The discussion revolves around the inverse square law of gravitation and its application to the force between two spheres, particularly in the context of varying densities and sizes. Participants explore the implications of mass and distance in gravitational calculations.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants examine the relationship between mass, density, and gravitational force, questioning how changes in size while keeping density constant affect the force. There is also discussion on the conditions under which the inverse square law applies.

Discussion Status

The conversation is ongoing, with participants providing insights into the conditions that govern the inverse square law. Some clarify that the law holds when masses are fixed, while others explore the implications of varying densities and sizes. There is no explicit consensus, but productive dialogue is evident.

Contextual Notes

Participants note that the gravitational force is influenced by both mass and distance, and that the familiar inverse square relationship may not apply when considering varying densities. The discussion reflects a mix of interpretations regarding the fundamental principles of gravitation.

ShaunPereira
Messages
40
Reaction score
4
Homework Statement
two identical spheres are placed in contact with each other. The force of gravitation between the spheres will be proportional to ( R = radius of each sphere)
Relevant Equations
$$F= \frac{Gm_1m_2} {r^2} $$
$$ m=\frac{4}{3}\pi R^3\rho $$
I recently encountered this problem on a test where the solution for the above problem was given as follows:
$$F= \frac{Gm_1m_2} {r^2} $$ (1)
but
$$ m=\frac{4}{3}\pi R^3 $$
substituting in equation (1)
$$F= \frac{{G(\frac{4}{3}\pi R^3\rho})^2 }{2R^2} $$
where r=radii of the two spheres
m=mass of the two spheres
##\rho ##=density of the two spheres

solving further we get
$$F \alpha \frac{R^6}{R^2}$$

Therefore,
$$F \alpha R^4$$

But isn't gravity an inverse square force. An explanation I read in a book previously said that
$$F \alpha R^4$$
cannot be correct because it is against the basic concept which is more important than a numerical value and that an inverse square law is fundamental and gravitational force is for masses and not for densities.

This makes more sense to me than the solution provided for the test but I am still really confused as to which explanation is right
 
Physics news on Phys.org
The inverse square law ##1/r^2## proportionality holds when the masses are fixed. In your case, keeping density of the spheres fixed and increasing the size also increases the masses of the spheres.
 
  • Like
Likes   Reactions: Vanadium 50 and ShaunPereira
Centripetal acceleration in uniform circular motion is given by both ##F = \frac{v^2}{r}## and by ##F=\frac{4\pi^2r}{t^2}##. So is it inversely proportional to ##r## or directly proportional to ##r##?

It depends on what you are holding fixed. If you hold velocity fixed, it is inversely proportional to ##r##. If you hold the rotational period fixed, it is directly proportional to ##r##.
 
  • Like
Likes   Reactions: ShaunPereira
... the gravitational force between two adjacent marbles is less than that of two adjacent planets. Even though the marbles centres are closer together.
 
  • Like
Likes   Reactions: ShaunPereira
Orodruin said:
The inverse square law ##1/r^2## proportionality holds when the masses are fixed. In your case, keeping density of the spheres fixed and increasing the size also increases the masses of the spheres.
Right. So does that mean that the force between the two spheres obeys the inverse square law when the masses are fixed and the distances vary. However when the sizes of the two spheres vary keeping density constant the force is no more proportional to ##R^2## but rather proportional to ##R^4##.

Newton's law of Gravitation still holds but we don't get the familiar equation as the answer. Its just a matter of what you take as constant and what you take as variable.

Right?
 
ShaunPereira said:
Right. So does that mean that the force between the two spheres obeys the inverse square law when the masses are fixed and the distances vary. However when the sizes of the two spheres vary keeping density constant the force is no more proportional to ##R^2## but rather proportional to ##R^4##.

Newton's law of Gravitation still holds but we don't get the familiar equation as the answer. Its just a matter of what you take as constant and what you take as variable.

Right?
Newton's law of gravitation says:$$F = \frac{Gm_1m_2}{r^2}$$where ##m_1## and ##m_2## are the masses of two point particles, and ##r## is the distance between them. That is an inverse square law. Note that the masses of the particles are relevant, not only the distance between them. There is no law that says ##F = \frac{G}{r^2}##.
 
PeroK said:
Newton's law of gravitation says:$$F = \frac{Gm_1m_2}{r^2}$$where ##m_1## and ##m_2## are the masses of two point particles, and ##r## is the distance between them. That is an inverse square law. Note that the masses of the particles are relevant, not only the distance between them. There is no law that says ##F = \frac{G}{r^2}##.
Yes. and the mass here is proportional to ##R^3## which when we put in our equation gives us the answer.
The inverse square law takes into account both mass and distances. Since both change we have to take both into account

Right?
 
ShaunPereira said:
Yes. and the mass here is proportional to ##R^3## which when we put in our equation gives us the answer.
The inverse square law takes into account both mass and distances. Since both change we have to take both into account

Right?
Yes, the force between any two objects is a specific calculation - in this case using the inverse square law and shell theorem. If the objects were cubes you'd have a different calculation.
 
  • Like
Likes   Reactions: ShaunPereira
PeroK said:
Yes, the force between any two objects is a specific calculation - in this case using the inverse square law and shell theorem. If the objects were cubes you'd have a different calculation.

Ok thanks.
 

Similar threads

Replies
6
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 97 ·
4
Replies
97
Views
6K
  • · Replies 63 ·
3
Replies
63
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K