MHB Inverse trigonometric functions

Click For Summary
The discussion centers on evaluating the expression $1. ~ \arccos(\cos\frac{4\pi}{3})$. Participants clarify that since the range of the arccosine function is $[0, \pi]$, $\cos\frac{4\pi}{3}$ should be expressed in that range. The correct transformation shows that $\cos\frac{4\pi}{3} = \cos\frac{2\pi}{3}$, leading to the conclusion that $\arccos(\cos\frac{4\pi}{3}) = \frac{2\pi}{3}$. A typographical error in the calculations is noted, indicating a possible confusion in the values used. The final consensus confirms that the answer is indeed $\frac{2\pi}{3}$.
Guest2
Messages
192
Reaction score
0
What's $1. ~ \displaystyle \arccos(\cos\frac{4\pi}{3})?$ Is this correct?

The range is $[0, \pi]$ so I need to write $\cos\frac{4\pi}{3}$ as $\cos{t}$ where $t$ is in $[0, \pi]$

$\cos(\frac{4\pi}{3}) = \cos(2\pi-\frac{3\pi}{3}) = \cos(\frac{2\pi}{3}) $ so the answer is $\frac{2\pi}{3}$
 
Mathematics news on Phys.org
There's an error in your last line.

Using symmetry,

$\cos\dfrac{4\pi}{3}=\cos\left(\pi-\dfrac{\pi}{3}\right)=\cos\dfrac{2\pi}{3}$
 
greg1313 said:
There's an error in your last line.

Using symmetry,

$\cos\dfrac{4\pi}{3}=\cos\left(\pi-\dfrac{\pi}{3}\right)=\cos\dfrac{2\pi}{3}$

Thanks. My reasoning was that cosine has a period $2\pi$. Where have I messed up?
 
Guest said:
What's $1. ~ \displaystyle \arccos(\cos\frac{4\pi}{3})?$ Is this correct?

The range is $[0, \pi]$ so I need to write $\cos\frac{4\pi}{3}$ as $\cos{t}$ where $t$ is in $[0, \pi]$

$\cos(\frac{4\pi}{3}) = \cos(2\pi-\frac{3\pi}{3}) = \cos(\frac{2\pi}{3}) $ so the answer is $\frac{2\pi}{3}$

$\displaystyle \begin{align*} \arccos{ \left[ \cos{ \left( \frac{4\,\pi}{3} \right) } \right] } &= \arccos{ \left[ \cos{ \left( \pi + \frac{\pi}{3} \right) } \right] } \\ &= \arccos{ \left[ -\cos{ \left( \frac{\pi}{3} \right) } \right] } \\ &= \arccos{ \left( -\frac{1}{2} \right) } \\ &= \pi - \arccos{ \left( \frac{1}{2} \right) } \\ &= \pi - \frac{\pi}{3} \\ &= \frac{2\,\pi}{3} \end{align*}$
 
Guest said:
My reasoning was that cosine has a period $2\pi$. Where have I messed up?

You typed a '3' where you probably intended a '4'.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K