MHB Irreducibles and Primes in Integral Domains ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Introductory Algebraic Number Theory"by Saban Alaca and Kenneth S. Williams ... and am currently focused on Chapter 1: Integral Domains ...

I need some help with understanding Example 1.4.1 ...

Example 1.4.1 reads as follows:View attachment 6516
In the above text by Alaca and Williams we read the following:

"... ... From the first of these, as $$2$$ is irreducible in $$\mathbb{Z} + \mathbb{Z} \sqrt{ -5 }$$, it must be the case that $$\alpha \sim 1$$ or $$\alpha \sim 2$$. ... ...
My question is as follows ... how does $$2$$ being irreducible imply that $$\alpha \sim 1$$ or $$\alpha \sim 2$$. ... ...?
Hope someone can help ...

Peter============================================================================NOTEThe notation $$\alpha \sim 1$$ is Alaca and Williams notation for $$\alpha$$ and $$1$$ being associates ...

Alaca's and Williams' definition of and properties of associates in an integral domain are as follows:https://www.physicsforums.com/attachments/6517
 
Physics news on Phys.org
The meaning of an element of a ring being irreducible is, that it cannot be expressed as a product of two distinct elements in the ring upto units barring itself and unity, upto equivalence, i.e., its associates. Thus, since $2$ is irreducible in the ring $\mathbb{Z}+\mathbb{Z}\sqrt{5}$, therefore the only two elements which can divide $2$ in the ring are, $2$ and $1$, upto equivalence, which implies $\alpha\sim1$ or $\alpha\sim2$.
 
vidyarth said:
The meaning of an element of a ring being irreducible is, that it cannot be expressed as a product of two distinct elements in the ring upto units barring itself and unity, upto equivalence, i.e., its associates. Thus, since $2$ is irreducible in the ring $\mathbb{Z}+\mathbb{Z}\sqrt{5}$, therefore the only two elements which can divide $2$ in the ring are, $2$ and $1$, upto equivalence, which implies $\alpha\sim1$ or $\alpha\sim2$.
Thanks vidyarth ... I appreciate your help ...

Peter
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...