As far as my limited understanding goes in physics, it is thought that since light can not escape from a black-hole that EM information under this paradigm ought not to either if this model is valid. I don't know about other kinds of information, but at least the implication (and please correct me if I am wrong about this) is that photons under the given conditions that have been observed are not able to escape a black-hole which is where I think all of these ideas stem from.
Now from a general point of view we have to consider all the information. In physics we usually associate the information with particles of certain kinds and we have forces for these as well as fields which are accounting in using the modern field theories of physics.
Now here's the kicker: what if we haven't found all the information yet? What if there is another particle or something similar with it's own force-carrier and field, or even if it doesn't have a force-carrier and just works completely non-locally?
[Speculation]I understand that information which otherwise has the potential to "reach" infinity (the spin and mass effects of gravity, through gravitons, and the charge effects of E-M radiation, through photons) has the potential to escape the black hole's event horizon through Hawking radiation. The photons or gravitons which escape a black hole do so obeying a black body spectrum.
What if such particles, according to their specific energies, together fulfill black body states so that such a spectrum is indistinguishable, part photonic and part gravitonic? That is, black body in energy yet anomalous in particle species.
The Higgs seems a candidate for an entity of greater information See
http://en.wikipedia.org/wiki/Higgs_boson The Higgs boson is a hypothetical elementary particle predicted by the Standard Model (SM) of particle physics. It belongs to a class of particles known as bosons, characterized by an integer value of their spin quantum number. The Higgs field is a quantum field with a non-zero value that fills all of space, and explains why fundamental particles such as quarks and electrons have mass. The Higgs boson is an excitation of the Higgs field above its ground state.
The existence of the Higgs boson is predicted by the Standard Model to explain how spontaneous breaking of electroweak symmetry (the Higgs mechanism) takes place in nature, which in turn explains why other elementary particles have mass. Its discovery would further validate the Standard Model as essentially correct, as it is the only elementary particle predicted by the Standard Model that has not yet been observed in particle physics experiments. The Standard Model completely fixes the properties of the Higgs boson, except for its mass. It is expected to have no spin and no electric or color charge, and it interacts with other particles through weak interaction and Yukawa interactions. Alternative sources of the Higgs mechanism that do not need the Higgs boson are also possible and would be considered if the existence of the Higgs boson were ruled out. They are known as Higgsless models.
__________
If you wanted to model this kind of non-local interaction, one way that I see visually is that you can model this kind of information exchange under a situation where the distance between any set of two points is zero. Mathematically, in any space if you have two points then all metrics need to positive when we deal with d(x,y) where x is not y, but consider for the moment that you have such a metric space with this property. What are the implications of this?
So to answer the question specifically it will depend on whether all the known particles that we have are actually a representation of all the information in the system and also with regard to the interactions that are bound on these bits of information.
If the only information is the information contained in electrons, photons, protons, neutrons and all that other jazz and the assumptions for the constraints we have are also right, then mathematically it seems sound.
I'm skeptical though that we have discovered all the 'fields' as you would put it though. The real answer to this is currently unknown, but I imagine that if there are new information quantities and mechanisms to communicate the information, then they will be found in something like the LHC.
However if you have to rely on mathematical arguments and existing data without having access to a particle accelerator with massive energies, you could look at any experimental situation where you get entropy anomalies.
Also the thing is that we don't just have black-holes in the lab or nearby (at least to my knowledge

which means that we can't get the actual data, but then again if (and this is an IMO hypothesis) you can create a black-hole type scenario by inducing a situation of enough entropy so that this mechanism is created (using the ideas talked about earlier in this very thread), then what will happen is that you could create such an element and study what happens.
In the RHIC experiment, they had what they called a 'fireball' when they smashed gold-ions together. If this was representative of 'entropy-control' or 'stability-enforcement', then it could give a bit of insight as to how a 'black-hole like mechanism' should act in an information theoretic context.
[Aside]
Non-local interactions
To dramatize what's happening in this EPR experiment, imagine that Green
detector is on Earth, and Blue detector is on Betelgeuse (540 light-years away)
while twin-state correlated light is coming from a spaceship parked halfway in
between. Although in its laboratory versions the EPR experiment spans only a
room-size distance, the immense dimensions of this thought experiment remind
us that, in principle, photon correlations don't depend on distance.
The spaceship acts as a kind of interstellar lighthouse directing a Green light
beam to earth, a Blue light beam to Betelgeuse in the opposite direction.
Forget for the moment that Green and Blue detectors are measuring something
called "polarization" and regard their outputs as coded messages from the
spaceship. Two synchronized binary message sequences composed of ups and
downs emerge from calcite crystals 500 light-years apart. How these two
messages are connected is the concern of Bell's proof.
When both calcites are set at the same angle (say, twelve o'clock), then PC =
1. Green polarization matches perfectly with Blue. Two typical synchronized
sequences of distant P measurements might look like this:
GREEN:UDUDDUDDDUUDUDDU
BLUE: UDUDDUDDDUUDUDDU
If we construe these polarization measurements as binary message sequences,
then whenever the calcites are lined up, the Blue observer on Betelgeuse gets
the same message as the Green observer on Earth.
Since PC varies from 1 to 0 as we change the relative calcite angle,
there will be some angle α at which PC = 3/4. At this angle, for every four
photon pairs, the number of matches (on the average), is three while the
number of misses is one. At this particular calcite separation, a sequence
of P measurements might look like this:
GREEN:UD
DDD
UDDDU
DDUDDU
BLUE: UD
UDD
DUDDU
UDUDDU
At angle α, the messages received by Green and Blue are not the same but
contain "errors"—G's message differs from B's message by one miss in every
four marks.
Now we are ready to demonstrate Bell's proof. Watch closely; this proof is so short
that it goes by fast. Align the calcites at twelve o'clock. Observe that the messages are
identical. Move the Green calcite by α degrees. Note that the messages are no longer
the same but contain "errors"—one miss out of every four marks. Move the Green calcite
back to twelve and these errors disappear, the messages are the same again. Whenever
Green moves his calcite by α degrees in either direction, we see the messages differ
by one character out of four. Moving the Green calcite back to twelve noon restores
the identity of the two messages.
The same thing happens on Betelgeuse. With both calcites set at twelve noon,
messages are identical. When Blue moves her calcite by α degrees in either direction, we
see the messages differ by one part in four. Moving the Blue calcite back to twelve noon
restores the identity of the two messages.
Everything described so far concerns the results of certain correlation experiments
which can be verified in the laboratory. Now we make an assumption about what might
actually be going on—a supposition which cannot be directly verified: the locality
assumption, which is the core of Bell's proof.
We assume that turning the Blue calcite can change only the Blue message; likewise
turning the Green calcite can change only the Green message. This is Bell's famous
locality assumption. It is identical to the assumption Einstein made in his EPR paradox:
that Blue observer's acts cannot affect Green observer's results. The locality
assumption—that Blue's acts don't change Green's code—seems entirely reasonable:
how could an action on Betelgeuse change what's happening right now on Earth?
However, as we shall see, this "reasonable" assumption leads immediately to an
experimental prediction which is contrary to fact. Let's see what this locality
assumption forces us to conclude about the outcome of possible experiments.
With both calcites originally set at twelve noon, turn Blue calcite by α degrees, and at
the same time turn Green calcite in the apposite direction by α degrees. Now the
calcites are misaligned by 2α degrees. What is the new error rate?
Since turning Blue calcite α degrees puts one miss in the Blue sequence (for every
four marks) and turning the Green calcite α degrees puts one miss in the Green
sequence, we might naively guess that when we turn both calcites we will gel exactly
two misses per four marks. However, this guess ignores the possibility that a "Blue
error" might fall on the same mark as a "Green error"—a coincidence which produces
an apparent match and restores character identity. Taking into account the possibility of
such "error-correcting overlaps," we revise our error estimate and predict that whenever
the calcites are misaligned by 2α degrees, the error rate will be two misses—or less.
This prediction is an example of a Bell inequality. This Bell inequality says: If the
error rate at angle α is 1/4, then the error rate at twice this angle cannot be greater
than 2/4.
This Bell inequality follows from the locality assumption and makes a definite
prediction concerning the value of the PC attribute at a certain angle for photon pairs in
the twin state. It predicts that when the calcites are misaligned by 2α degrees the
difference between the Green and Blue polarization sequences will not exceed
two misses out of four marks. The quantum facts, however, say otherwise. John
Clauser and Stuart Freedman carried out this EPR experiment al Berkeley and
showed that a calcite separation of 2α degrees gives three misses for every four
marks - a quite substantial violation of the Bell inequality.
Clauser's experiment conclusively violates the Bell inequality. Hence one of
the assumptions that went into its derivation must be false. But Bell's argument
uses mainly facts that can be verified - photon PCs at particular angles. The only
assumption not experimentally accessible is the locality assumption. Since it
leads to a prediction that strongly disagrees with experimental results, this
locality assumption must be wrong. To save the appearances, we must deny
locality.
Denying locality means accepting the conclusion that when Blue ob
server turns her calcite on Betelgeuse she instantly changes some of
Green's code on Earth. In other words, locations B and G some five
hundred light years apart are linked somehow by a non-local interaction.
This experimental refutation of the locality assumption is the factual basis
of Bell's theorem: no local reality can underlie the results of the EPR
experiment.
Nick Herbert, Quantum Reality: Beyond the New Physics (Anchor, 1987, ISBN 0-385-23569-0)
[Speculation]Does the violation of the probabilistic Bell inequality relate to a like second law of thermodynamics? Would black hole Hawking radiation obey a "Bell equality"?
The best way to detect a black hole may be to seek its spectrum of annihilation. This may be relatively thermal at first but also discretized -- as the hole diminishes, so the number of constituent particles to radiate and fill out the Planck curve. The upper limit on such spectra may determine the upper limit on black hole density.
Given that a "Planck datum" is the smallest unit of information, how many would be necessary to describe our physical universe? Maybe a myriad of identical cosmological, intersecting black holes would similarly suffice.
Since the highly symmetric black hole requires high energy to create, we will gradually produce entities of closer and closer approximations in symmetric reactions. On the other hand, we may assemble a pocket watch.