Is an infinite series of random numbers possible?

Click For Summary
The discussion centers on the possibility of creating an infinite series of non-repeating random numbers, questioning the definitions of "random" and "infinite series." Participants explore thought experiments involving coin tosses and irrational numbers to generate random sequences, while debating whether such sequences can be truly random or if they must adhere to definable patterns. The conversation highlights the complexity of defining "randomness," suggesting that randomness may contradict the inherent order and relations that define numbers. Ultimately, the consensus leans toward the idea that true random number generation may be impossible due to the need for both unpredictability and determinism. The concept of "random numbers" is increasingly viewed as an oxymoron within the context of mathematical definitions.
  • #31
I'm going to give my thoughts on a topic by topic basis since there is a lot in this post. Again, these are just my opinions and I welcome any feedback you may have whether it's mathematical or just in the non-technical spoken manner which I will prefer to use in these posts.

Loren Booda said:
Blackbodies at temperature T -- http://en.wikipedia.org/wiki/Black_body A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence.

A black body in thermal equilibrium (that is, at a constant temperature) emits electromagnetic radiation called black-body radiation. The radiation is emitted according to Planck's law, meaning that it has a spectrum that is determined by the temperature alone, not by the body's shape or composition.

A black body in thermal equilibrium has two notable properties:

It is an ideal emitter: it emits as much or more energy at every frequency than any other body at the same temperature.
It is a diffuse emitter: the energy is radiated isotropically, independent of direction.

An approximate realization of a black body is a hole in the wall of a large enclosure. Any light entering the hole is reflected indefinitely or absorbed inside and is unlikely to re-emerge, making the hole a nearly perfect absorber. The radiation confined in such an enclosure may or may not be in thermal equilibrium, depending upon the nature of the walls and the other contents of the enclosure.

I just want to talk about something before I get into the main response:

So far it seems that the current idea is that every known force has a force mechanism that is represented by particles that are in standard model and that some people are still looking for similar mechanism for gravity which they call a 'graviton'. In other words for forces to act there is a physical exchange of these 'carriers' with other particles that initiate a force and thus change the properties of a physical system or a particle.

Now with regard to some kind of localness, this makes intuitive sense because in terms of analyzing physical changes (which include subsequent changes in physical states which quantify energy characteristics) because spatio-temporally, at least in terms of local changes because it gets rid of the thing that Einstein referred to as 'spooky action at a distance' which is something that is hard if it did exist for most scientists to grasp since the world is viewed in terms of local spatio-temporal changes in the way that we use derivatives in calculus to represent local properties of a function.

I've diverted a bit from the question so I'll get back on track, but I stress that is important to consider that if anything has a hint or just plain and simply is non-local then this means new analyses are needed. I have said it above but I think it's important to reiterate.

Now let's think about this in terms of entropy for the black-body.

We know that entropy relies on not only the nature (shape) of the distribution itself, but also the number of states and I wish to talk about this now.

If the number of states is indeed finite, then any associated relative entropy of that system will also be finite. The question then remains, how do we identify the states if they are finite?

The evaluation of the states is something that is probably the most important part of understanding physical laws because not only does it give predictive power, but it also allows a better understanding.

The methods that are currently used include different forms of quantization. The quantization schemes differ from theory to theory, but the idea is the same: there are not going to be an uncountable number of states within some finite representation.

We might for example take the idea to quantize space-time in a variety of ways and this is something that is being worked on. The quantization might say that for example that all physical elements can only occupy certain states individually like a lattice. Another theory might argue that only specific 'combinations' can exist for something to be called a state. This would be analogous to phenomena found in the Standard Model with say the requirement for quark configurations in various atomic particles. It also might be even more complex where again where it is a non-local and more complex version of the quark phenomenon.

The point of the above is that once we can show one way or another that for some finite region (might be everything contained within a space-time boundary or even a subset) always has a bounded entropy for all relative joint distributions, then you know that there is a quantization of states and that the relative entropies will give 'hints' about what the quantization scheme actually is depending on the nature of the conditional distributions and the complex of those distributions.

So with the above said, even for something like a black-body that has those properties, if there really exists a proper quantization within some finite region of some sort, then any kind of entropy in this space will always be bounded even for something like a black-body.

Remember I'm talking about the state-space of the system.
 
Physics news on Phys.org
  • #32
Loren Booda said:
Anthropic entropic principle -- I hypothesize that, rather than observers (life) be where entropy density is high, they exist where entropy density is low. The act of observation itself could rely on semicoherent radiative interaction, and so tend participants toward lower entropy density.

I think this question has more subtleties than you might realize.

The thing about observation is that it is not an isolated incident even when you only consider observations of one particular instrument.

The thing about observation is that it is not a single-event phenomena but it is a multi-event phenomena. Observations are not isolated: they rely on other observations as well.

If you expected for something with respect to a set of observations to get more ordered with respect to some ordered set of observations, then the entropy would in this context decrease with respect to this particular sequence of observations. Mathematically if our ordered set of observations was {S1,S2,S3,...} = S then P(S|U) represents the distribution and we would expect a resultant entropy decrease for a respective measure of order in this context.

I know this might seem like a copout, but correlation does not imply causation. Intuitively though, it would seem that entities would have some kind of impetus to minimize various conditional entropy measures as to create order rather than attempt to increase entropy to create more chaos.
 
  • #33
Loren Booda said:
Reciprocity of entropy -- In practice, the inequality in the second "law" of thermodynamics may be the crux of the argument against it being a true law. This law may be violated for a nonisolated system. But might it also not hold in general time-like spacetime?

There has been at least one experiment that I know of (at ANU) that has shown that this doesn't hold as a law set in stone (only for a fractional amount of time, but again it proves the point).

The response I have for this is the same as what I said above: if all measures of entropy where increasing then we would expect systems to get more chaotic and not less chaotic. I'm not saying that different entropy measures will always violate the 2nd law, but what I'm saying is that the idea of continually increasing chaos is not what we experience.

We can talk about plates breaking and all these kinds of things that support it, but again there is a huge amount of order in our universe in so many ways and this tells me that not everything gets more chaotic and some things get a hell of a lot more ordered.

Following this thread I'm inclined to go review current theories and mathematical constraints for the various theories later on, but for now I can say that as a whole, I do not know at this time enough about the constraints to give a qualitative and specific answer.
 
  • #34
Loren Booda said:
Anentropy -- I think that entropy depends not only on the states of a configuration, but also on the network of interconnections (entanglement) between states." Anentropic" by nature of retrospection, this latter "pattern memory" potentially surpasses entropy's information exponentially in magnitude.

This is precisely what conditional distributions describe. In fact patterns are simply a way of taking some kind of transformation of the state-space and in which the entropy is minimized. If the entropy of that transformed state-space conditional distribution is zero, then that is a 'pattern'.
 
  • #35
Loren Booda said:
A vacuum of virtual particles -- http://en.wikipedia.org/wiki/Vacuum_state In quantum field theory, the vacuum state (also called the vacuum) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. Zero-point field is sometimes used as a synonym for the vacuum state of an individual quantized field.

According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space", and again: "it is a mistake to think of any physical vacuum as some absolutely empty void." According to quantum mechanics, the vacuum state is not truly empty but instead contains fleeting electromagnetic waves and particles that pop into and out of existence.

The presence of virtual particles can be rigorously based upon the non-commutation of the quantized electromagnetic fields. Non-commutation means that although the average values of the fields vanish in a quantum vacuum, their variances do not. The term "vacuum fluctuations" refers to the variance of the field strength in the minimal energy state, and is described picturesquely as evidence of "virtual particles".

It is sometimes attempted to provide an intuitive picture of virtual particles based upon the Heisenberg energy-time uncertainty principle:

Δ E Δ t ≥ h-bar ,

(with ΔE and Δt energy and time variations, and h-bar the Planck constant divided by 2π) arguing along the lines that the short lifetime of virtual particles allows the "borrowing" of large energies from the vacuum and thus permits particle generation for short times.

Just as a general observations, I really couldn't imagine a situation where you would be able to completely nullify energy of a system, no matter what the magnitude or what the region of space.

Just as a thought experiment imagine if you could in some region, nullify the energy for that region. This would mean that for this region if this was the case everything would be completely static and there would be no possibility for any kind of dynamic behaviour.

With regard to virtual particles being used to 'borrow' energy, again in terms of state-space I would consider this as part of the system and not something that is isolated from it. The fact that it exists or at least the mechanism in some form exists means that it should be included in whatever way that is appropriate.

The big thing at least in my mind is this: how does the quantization of energy (as given by E = hf) relate to the quantization of the medium used to represent it? Moreover, how does all of this affect the supremum of the entropy measures in some finite space that I was talking about earlier?

Personally I think the nature and quantities related with the lowest states tell us a lot about the nature of the system. I'm going to have to at some point take a closer look at these kinds of things: you've got me interested now damnit!
 
  • #36
Loren Booda said:
A cosmologist observing his self-inclusive universe -- I believe this could be modeled by your staircase algorithm, chiro, where observation cycles to the event horizon and back, and as speculated by early relativists, observers could see themselves gravitationally imaged about the circumference.

The staircase algorithm was just an example to show how you could use entropy measures to deduce an order or pattern of some sort and this was always the intention.

I've heard about the nature of cyclic structures in physics like cyclic time and so on, but I can't really comment on the specifics.
 
  • #37
Cosmological entropy -- The blackbody spectrum is accurate to the finite number of radiating bodies which compose it. Heat exchange toward equilibrium moves the measured cosmic background radiation emissions to the perfect thermal curve, driving an increase in surrounding order. This balance avoids the "heat death" of the universe by limiting the blackbody radiation to countable radiators -- i.e. spacetime never realizes a maximally symmetric, boundless and randomized state approaching infinite entropy, but one which exhibits gains of statistical anentropy.

Microscopic entropy -- Vacuum mass-energy is paradoxically empowered by the action of observations - from the Copenhagen interpretation, I believe. (Without observers, would Maxwell's Demon work?) The likelihood of population by virtual quanta increases with more constant entropy density, assured by a random thermal distribution. Entropy density bounds are determined by their divergence there from the blackbody spectrum as ω/2∏ approaches 0, or ∞. You brought up that quantum energy being zero in space-time does not intuit comfortably, as I put it:

ΔE: E≠0.

Is this reminiscent of quantum number rules?
 
  • #38
One thing I want to comment on in general so it may help you understand why I am even spending many posts talking about this topic.

Scientists study nature in the hope that they understand something at whatever level which at a minimum usually relates to figuring out how 'something works'.

If a scientist figures out some particular thing, they have found an order in that context. The larger the pattern applies to, the larger the order. It might be a small order like figuring out a particular cell or virus always acts the same way or it might be a large order like describing the general conditions or approximate conditions that gravity or electromagnetism follows. Both examples are types of orders but the more general one applies to a state-space much more broadly than the prior one.

When you keep this in mind, it becomes a lot more obvious that statistical methods are necessary because they can see things that any kind of local deterministic analysis would not and in fact unsurprisingly in many contexts, they do just this when you look at how these things are applied in data mining applications. Also you'll find that these kinds of statistical techniques and analysis are found when you have to analyze data from say the Large Hadron Collider or some other really highly data-intense scenario like you would find in astrophysics or even in miltary applications (think of all the people who use the really powerful supercomputers and then find out why they use them).

If you lose sight of this above aspect, then you have only constrained yourself to representations that give a very narrow local viewpoint, although albeit still a very important one but if you can not free your mind from this mental prison then you will be missing out on all the other things out there and not connecting all of the other isolated orders that have been discovered (like all the the other physical formulas and so on) and treat them largely as separate instead of as connected.
 
  • #39
Loren Booda said:
Cosmological entropy -- The blackbody spectrum is accurate to the finite number of radiating bodies which compose it. Heat exchange toward equilibrium moves the measured cosmic background radiation emissions to the perfect thermal curve, driving an increase in surrounding order. This balance avoids the "heat death" of the universe by limiting the blackbody radiation to countable radiators -- i.e. spacetime never realizes a maximally symmetric, boundless and randomized state approaching infinite entropy, but one which exhibits gains of statistical anentropy.

Microscopic entropy -- Vacuum mass-energy is paradoxically empowered by the action of observations - from the Copenhagen interpretation, I believe. (Without observers, would Maxwell's Demon work?) The likelihood of population by virtual quanta increases with more constant entropy density, assured by a random thermal distribution. Entropy density bounds are determined by their divergence there from the blackbody spectrum as ω/2∏ approaches 0, or ∞. You brought up that quantum energy being zero in space-time does not intuit comfortably, as I put it:

ΔE: E≠0.

Is this reminiscent of quantum number rules?

Taking a look at this:

http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch6/quantum.html#quantum

It seems to indicate that the energy of the electron requires x amount of energy in accordance with some mathematical constraints to go between orbitals and that it can never go below the orbital corresponding to n = 1. I have to point out that I am someone with mathematical training who has not studied physics specifically enough to put a lot of this into context in a specific way.

It seems that from this fact there is indeed a minimum energy level that is non-zero and in the context of what you are saying I am inclined to agree if this quantum number accurately reflects the attribute of the magnitude of the energy present.

For the cosmological part, again I am going to base my agreement on the line that if there were infinite entropy then there would be absolute chaos. Chaos in this kind of context is not good for anything especially life because for many things to function, orders of different kinds must be present. Imagine for example if gravity was just an ad hoc thing that decided when to be +9.8m/s^2 or when it decided to be -1000m/s^2. Think about what this would do to life: IMO it wouldn't exist.

There is also an argument by physicists that say that if the constant G were outside of a very narrow range then life including us would cease to exist. I don't know if its true or not but the kind of argument has a lot of important implications for science because what it does is brings up the issue of how order is so important for possibly not only us humans to exist or even all plant and animal life to exist, but possibly even for the universe as we see it to even exist.

It's not to say however that there do not exist finite subsystems with maximal or close to maximal energy for that subsystem. High levels of entropy in given situations are important IMO because a high level of entropy induces disorder which in a statistical sense equates to non-determinism or randomness. That element of randomness allows us to have the antithesis of what we could consider a 'Newtonian Universe' where a universal clock and absolute rules dictated the complete evolution of the system. If this were the case then we would be able to exhaust every possibility down to some conditional order and we would get a minimal entropy characteristic for the system just like the stair-case example I posted earlier but maybe in a more complicated manner.

So again the reason why I agree with you about having bounded entropy as a general property for all possible conditional distributions but for still having appropriate situations where entropy is maximal with respect to some sub-space is that it allows for things to still work (like life) but it also allows the case where there is 'real' evolution and for lack of a better word 'choice' at any kind of level for any scale given appropriate constraints (which we are in the process as human beings, trying to figure out).

If the above doesn't make sense to you, imagine the broken plate scenario happening with gravity, electromagnetism, the strong force, and even something more macroscopic like biological interactions. Imagine for an instant that people were splitting in half randomly and people's heads were dissappearing into outer space and then back again like a game of russian roulette. Imagine you picking up a gun unloading the chamber and then you fire the pistol and a bullet comes out.

To me, this is the above reason why there are constraints and understanding what these constraints are will probably give us humongous hints about why we even exist.
 
  • #40
Parallel Universes, Max Tegmark -- http://space.mit.edu/home/tegmark/PDF/multiverse_sciam.pdf. What is not physically possible in an infinite universe? Can a finite universe have infinite possibilities? Do universal event horizons repeat without bound?

Are observers physically immortal?

A truly unified theory might transform the existing order in maximal ways, including entropy/anentropy reversal.

Thermal disequilibrium moves toward equilibrium by absorbed or emitted correspondent photons, with a decrease in entropy.

What is the most ordered universal structure possible? Is an empty universe interpretable as having both maximum and minimum entropy density? Can a maximally entropic universe have the same "complexity" as one of minimum entropy? Does an observer always impose order upon a more random universe? Can two or more disordered universes interfering together (e.g. through branes) reduce entropy overall?

Entropy, being scale dependent, sees an object like the Moon as being more ordered on many levels relative to the Earth.

Probability zero regions, found near atomic orbitals, are located in singular spacetime structures but quantum mechanically can be considered P>1, as they can not accommodate finite particles.

The cosmic background radiation -- containing the microwave background radiation -- includes photons, gravitons, WIMPS (like neutrinos) and perhaps Higgs particles which impinge anentropically (focused) from the event horizon upon an observer. The accelerating cosmos, with possible inflation, linear expansion, and dark energy provide an outward entropic divergence of energy.
 
  • #41
Loren Booda said:
Are observers physically immortal?

This is an interesting question.

Frank Tipler has written a book trying to flesh out ideas about the physics of immortality. Just in case you are wondering, he has written pretty extensively about topics involved in General Relativity and even to some extent Time Travel with respect to space-times that allow theoretical paths to time travel.

But if I wanted to give a specific question for this, I would be asking this important question: what energy is involved for consciousness, what kind is it, where is it stored (in some kind of field for example) and how can it be transformed?

In my view, answering those questions will give a specific way to start thinking about this question in depth from a viewpoint that I think both scientific communities and religious communities can both appreciate and agree on as a basis for exploring this topic further.

Personally (IMO disclaimer), I think that there is some kind of other field that is not part of the known fields like EM, the nuclear forces and gravity that contains something that compromises of what we call 'consciousness'.

I am not saying that things like EM and the other forces don't play a role in how we behave, what we think, and so on, but I don't think that it is the whole story.

With the above aside in terms of immortality, if the energy that makes up consciousness can not be destroyed, and also can not be transformed away to something that loses or wipes information about conscious awareness then I would say that yes physical observers are indeed immortal on that argument.

But in order to argue the above you have to first define what consciousness actually is in terms of energy and also what kinds of energy forms they actually are and unfortunately I have a feeling it's going to take a while to even get close to even defining the specifics of this, let alone doing an experiment or having discussions about the veracity of whether the claim is wrong, right, or somewhere in between.

Parallel Universes, Max Tegmark -- http://space.mit.edu/home/tegmark/PDF/multiverse_sciam.pdf. What is not physically possible in an infinite universe? Can a finite universe have infinite possibilities? Do universal event horizons repeat without bound?

In terms of the infinite possibilities question, again this comes down to the discussion we had before about whether you can always construct a joint distribution that has random entropy for all conditional distributions for 'prior' events. In other words the entropy of each possible conditional distribution has maximal entropy. If this is always the case, then you should have infinite possibilities.

Also remember that the above is framed in terms of a finite state space. Think about it like constructing a process where no matter how you construct any conditional distribution for the next roll given every permutation of the previous rolls, all distributions will have maximal entropy. This means that you can construct a completely random system. If you can't do that but can do something in between minimal and maximal entropy then it is semi-random. If you can only construct a zero entropy distribution, then it means your system has become deterministic.

For the infinite universe question (what is not possible in an infinite universe), this will have to do with not only physical arguments but with philosophical arguments as well.

You see the reason that plates just don't assemble themselves from broken states and that gravity acts in a uniform way and even that quantum behaviour and all other physical interaction mechanisms work the way they work says to me at least that there is a reason why you can't just do 'anything you want', at least not currently.

Again my thought experiment would be to consider if people just randomly dematerialized and gravity just decided when it wanted to 'work' and 'not work' and the kind of chaos that would create for life in general. This tells me that there is a reason for the constraints at least in the context that you want an environment that supports and promotes the situation for living organisms in any form.

In terms of possibilities, this can be formed if you have a clearer idea of the nature of the different joint distributions. The big caveat though is that we don't have these yet. Science is very young for earthlings in the current state it is in and the amount of data we have and also the tools to effectively analyze it are not mature enough to really make all of these connections.

It's not just actually having the data: it's also having the computational hardware and technology, the algorithms, the mathematical techniques, and all of this to actually do all of this. These areas are evolving quite rapidly, but it's going to be a little while at least before it gets to a stage where we can give a more specific quantifiable answer using the above to answer 'what's really possible'.

For now we have to rely on experimental results, theoretical ideas and discussions, and the inquisition of scientists to help push this boundary and thankfully this is happening on a scale that probably never would have been imagined even a hundred years ago.

A truly unified theory might transform the existing order in maximal ways, including entropy/anentropy reversal.

The ironic thing about humans is that we crave certainty.

While I don't think this is necessarily a bad thing, the effect that it can have is that in a scientific perspective, we want as much certainty as possible both in its predictive power and subsequently in the mathematical representations that are used to both describe and predict things.

Quantum mechanics has come along and destroyed this notion and I think it's a thing that we should embrace at least in the idea that at some level, things will not be able to be predicted.

Here is one idea I have about why this kind of thing is good.

Consider that you have the complete set of laws that allow you to take the state of the complete system and engineer it in such a way that you can create whatever state you want at a future point of time.

Now consider what the above would do to the stability of the system. This situation creates situations where the stability of the system itself can be for lack of a better word, destroyed.

If situations exist like this, then what this would mean is that you would get all these possibilities where you would get these situations where things just literally blow up and create a situation where the evolution of a system is essentially jeopardized.

In a situation where this doesn't happen, you would need some kind of non-zero minimal entropy for all conditional permutations to avoid this very scenario which means you need to resort to a statistical theory of reality and not a deterministic one.

A situation where levels of stability in different contexts are 'gauranteed' or at least probabilistically high enough to warrant enough confidence would result in a kind of collective design so that this kind of thing would either not happen, or at least happen with a tiny enough probability so that it can be managed.

In fact if things had some kind of entanglement, then this mechanism could be used to ensure some kind of stability of the entire system and localize instabilities of the system if they do occur as to ensure that the system as a whole doesn't for lack of a better word 'blow up'.

The real question then if the above has any merit, is to figure out how you balance this kind of stability with the system both locally and globally having the ability to evolve itself in a way that is fair?

Thermal disequilibrium moves toward equilibrium by absorbed or emitted correspondent photons, with a decrease in entropy.

I don't know the specifics, but in the context of what I've been saying in this thread it would not be good for system stability to move towards a state of either maximal entropy or complete minimal entropy for reasons discussed above.

What is the most ordered universal structure possible? Is an empty universe interpretable as having both maximum and minimum entropy density? Can a maximally entropic universe have the same "complexity" as one of minimum entropy? Does an observer always impose order upon a more random universe? Can two or more disordered universes interfering together (e.g. through branes) reduce entropy overall?

To me, the situation where you have the most ordered universe is where all conscious forms work together in a way that doesn't create instability.

Some might see this as a religious theme or some kind of 'new age' comment, but an ordered system would look more like something that works in unison for each and every element rather than having elements working against one another.

If I had to characterize it, I would characterize it as every conscious form working with another to create the scenario where everything would be supplementing everything else in a way that creates a system where the energy ends up being directed in a way that everything works together as a whole which results in a kind of unification of all conscious beings which means that everything becomes a unified system which in terms of information means that it can be described as such which results in a decrease of entropy.

Remember entropy in this context is synonymous with not only order but also with the amount of information to describe something.

Remember that if you have a collective system that reaches some set of unified goals or constraints, then instead of having all these separate set of constraints to describe something, you end up having a situation where they end up merging which will result in requiring less information to describe the system. This lessening in the amount of information to describe the system translates in a reduction of entropy including the overall measures for all conditional entropies.

To me, the observer has the choice to either decrease or increase the entropies that end up contributing to the system as a whole but I would estimate that for a collective system to evolve in a positive manner, you would always want a system to at the very least decrease it's entropy over its evolution within any sub-region and collectively to find some kind of order for the system as a whole that reduces it's entropy from a previous state.

In terms of what that actual order is, I can't say but I imagine that there are many different kinds orders that could be formed just like there are many different functions that can be described once you have a dictionary and language structure that is minimal enough to describe a complicated system in a minimal form.

If this sounds like BS or foreign you should note that these ideas are a huge part of information theory including the area known as algorithmic information theory. If you want more information about this you should look up Kolmogorov complexity: it's not something that has been clarified in terms of algorithmic methods but the idea has been clarified to some respect.

Entropy, being scale dependent, sees an object like the Moon as being more ordered on many levels relative to the Earth.

A very good observation.

The thing is however, you need to define the order being used and this is really the heart of what makes language interesting.

The nature of the order could be to do with geometry and color variation. Describing a filled circle with a color spectrum that has little variation in one language is ordered.

But in another language it is not ordered. In another language something like the Mandelbrot set is highly ordered, but describing the moon in that language is highly disordered and requires a tonne of information.

This is why we have so many languages, jargon, structures, codings and so on. They all have a purpose in a given context. One language will represent something with minimal order but when you convert it to something else, it would take a ridiculuous amount of information to represent that same thing.

The question then becomes, how do we create languages in the best way possible? This is not an easy question and it is something that we are doing both consciously and unconsciously every single day.

The ultimate thing is that there are many different orders and not just one which makes it very interesting because we as scientists want to find 'the universal order' but my guess is that there are many orders that are just as valid as any other at the scope that they are presented at (i.e. the actual state space that these orders correspond to: think in terms of cardinality of the set).

Probability zero regions, found near atomic orbitals, are located in singular spacetime structures but quantum mechanically can be considered P>1, as they can not accommodate finite particles.

I don't know what this means, can you give me a link to a page that describes this?

The cosmic background radiation -- containing the microwave background radiation -- includes photons, gravitons, WIMPS (like neutrinos) and perhaps Higgs particles which impinge anentropically (focused) from the event horizon upon an observer. The accelerating cosmos, with possible inflation, linear expansion, and dark energy provide an outward entropic divergence of energy.

Can you point somewhere where this is described mathematically (and possibly in summary in english)? I'm for most purposes a mathematician/statistician and not a physicist.
 
  • #42
By the way I haven't read the article for multiverses so I'll read that shortly.
 
  • #43
The (quantum) wavefunction condition ψ(x)=0 holds continuously only when it is everywhere continuous.

Hypothesis: at a given x, the probability P(x)=ψ*ψ (assumed continuous and smooth) of locating a singular particle is assumed zero at the singular point ψ(x)=0. So ψmin(x0)=0 implies (dψ/dx)min(x0)=0, unless ψ=0 for all x.

__________

If ψmin(x)=A(exp(2∏i(xp/h)))(x=0)=A(cos(2∏(xp/h))+isin(2∏(xp/h)))(x=0)=0

Eigenvalues: x=(N+1/2)h/2p

and (dψ/dx)min=-2∏(p/h) A(-sin(2∏i(xp/h)))+icosA(exp(2∏i(xp/h)))=0

Eigenvalues: x=N(N+1/2)(h/2p)2

__________

P=probability=ψ*ψ

x=spatial dimension

A=constant

N=integer

h=Planck's constant

p=momentum

Conclusion: if ψmin(x0)=0, its first derivative derives a singular, local maximum or minimum there, but its neighboring points do not, unless ψ(x)=0 for all x.
 
Last edited:
  • #44
Geez Loren Booda, you'll really stretching me! I love it! :) I'll give an answer shortly.
 
  • #45
Loren Booda said:
The (quantum) wavefunction condition ψ(x)=0 holds continuously only when it is everywhere continuous.

Hypothesis: at a given x, the probability P(x)=ψ*ψ (assumed continuous and smooth) of locating a singular particle is assumed zero at the singular point ψ(x)=0. So ψmin(x0)=0 implies (dψ/dx)min(x0)=0, unless ψ=0 for all x.

__________

If ψmin(x)=A(exp(2∏i(xp/h)))(x=0)=A(cos(2∏(xp/h))+isin(2∏(xp/h)))(x=0)=0

Eigenvalues: x=(N+1/2)h/2p

and (dψ/dx)min=-2∏(p/h) A(-sin(2∏i(xp/h)))+icosA(exp(2∏i(xp/h)))=0

Eigenvalues: x=N(N+1/2)(h/2p)2

__________

P=probability=ψ*ψ

x=spatial dimension

A=constant

N=integer

h=Planck's constant

p=momentum

Conclusion: if ψmin(x0)=0, its first derivative derives a singular, local maximum or minimum there, but its neighboring points do not, unless ψ(x)=0 for all x.

The thing though is that with physics, the discussion is about what to do with regards to the issue of having one theory in continuous space (General Relativity) and another in discrete space (Quantum Field Theory).

Now I've been reading a little bit about this lately and one approach that is being used is to 'quantize' GR in which you basically get the field of Quantum Gravity.

This approach in my mind makes more sense than trying to make QFT continuous. My reasons for thinking this way is that we already know that all of the interactions and subsequently all the energy calculations work in a quantize way so at least to me it doesn't make sense to have an embedded set that describes the space to be continuous either.

For the above, it's like for example taking a Diophantine system and then describing the sets for describing the domain and codomain to be real numbers. This is completely un-necessary because you know that for this kind of thing you are only going to deal with finite numbers of states when you look at a finite subregion of the entire state-space for that particular process.

So based on this line of reasoning (which may be right or wrong and I'd love to hear your comments), then the next thing to do is to find a quantization scheme for space-time which is what many people are working on currently in many ways.

What this will do is essentially force the probability distribution to be non-continuous, but the real question lies in the way that it will be discontinuous.

See the thing is that you can't just quantize the space in the regular way that you would say quantize a 3D cartesian geometry by quantizing each axis individually. The problem with doing that is that not only are dealing with non-euclidean space-times, but we are also dealing with quite a number of interactions that ultimately will define the actual quantization procedure of space-time itself.

Personally one way I would approach this quantization is from a number-theoretic viewpoint because if a quantization scheme had to exist for a completely quantized system, then it means that for this quantization scheme the solutions to the Diophantine equations that specify that system would have to make sense in the way that all the solutions that are meant to exist corresponding to results in this physical reality actually do exist and also just as equally important, all the results that do not exist also don't exist in the Diophantine system.

So if you were to go this route, then the first thing would be to think about ways of expressing a Diophantine form of the system (it will have probabilistic properties of course) and then through the probabilistic description of the Diophantine system, then generate some useful probability definitions of a specific part of the system, like a particle like an electron.

One of the tricks to model the kind of behaviour you find in Diophantine systems that take place in continuous systems is to use the Dirac Delta function. This 'infinite-spike' allows you to model the behaviour of a finite field when you are dealing with a continuous state-space. When you have a natural space that is discrete, this isn't needed and you can get all the kinds of discrete behaviours when you consider something like a Diophantine system to model a process (and it's important to note that it can be made probabilistic).

So my question to you is, will you continue to work in a continuous framework meaning that you have to deal with all these issues related to Dirac-Delta spikes, discontinuities of every sort and the consequences of such, or are you willing to go the other way and assume a completely discrete framework and as a result use number theory (and it's probabilistic variant) to do physics instead?
 
  • #46
Special relativity imposes a relative speed limit of light speed c. General relativity, Georges Lemaître posited, has no relative speed limit for the universe. Particle horizons proceed toward us from a theoretical big bang in reverse order of their creation. The singular big bang, relative to us, may actually stretch across the celestial sphere. The distance of the singularity from us could well determine our physical universe. Whether the big bang is now out to infinity or at a finite horizon has affected particle creation, the evolution of forces, physical constants and the (local) geometry of our spacetime.

Think of cars accelerating from a stop. The cars behave much like galaxies moving according to the Hubble distance expansion, approximately r=c/H0, where r is the relative distance a galaxy is from us, c the speed of light and H0 the Hubble constant, about 70 (km/s)/Mpc. (That is, kilometers per second per megaparsec.) The farther one travels outward, the faster one expands relative to home base. If the law holds, eventually the traveler reaches the event horizon, where, like a black hole, Earth-light does not have the energy to continue (but there the traveler might find himself in a sea of Hawking radiation thanks to his investment).

Close to home we observe some rotational, then somewhat peculiar (random) expansion of the galaxies, farther on the moderate "Hubble law" escape, then the many named accelerative outward expansion, first found by supernova measurements. While our universe rushes away from us (and does so wherever we happen to be) the big bang remnant, singular as ever, has rained particles (albeit diminished) upon us. The microwave background is one remnant -- recombination of electrons and protons to create hydrogen. This happens in the lab at 3000K, which when divided by 2.7K, just happens to yield the redshift (Z≈1000) of the MBR.

The question remains, how does the ultimate outward cosmic background radiation (CBR, not just from microwave horns) correspond to the inner one of particle accelerators? When we look to the sky we see a rain of photons, when we look to the ground we feel the pull of gravitons. What might be interesting to measure is the entropy of the outer flow against that of the inner. Pointing our telescopes farther unravels earliest times; nearer do our microscopes enable uncertainty. We learn that out of high energy condense the quanta of fundamental forces.
 
  • #47
Loren Booda said:
Special relativity imposes a relative speed limit of light speed c. General relativity, Georges Lemaître posited, has no relative speed limit for the universe. Particle horizons proceed toward us from a theoretical big bang in reverse order of their creation. The singular big bang, relative to us, may actually stretch across the celestial sphere. The distance of the singularity from us could well determine our physical universe. Whether the big bang is now out to infinity or at a finite horizon has affected particle creation, the evolution of forces, physical constants and the (local) geometry of our spacetime.

Think of cars accelerating from a stop. The cars behave much like galaxies moving according to the Hubble distance expansion, approximately r=c/H0, where r is the relative distance a galaxy is from us, c the speed of light and H0 the Hubble constant, about 70 (km/s)/Mpc. (That is, kilometers per second per megaparsec.) The farther one travels outward, the faster one expands relative to home base. If the law holds, eventually the traveler reaches the event horizon, where, like a black hole, Earth-light does not have the energy to continue (but there the traveler might find himself in a sea of Hawking radiation thanks to his investment).

Close to home we observe some rotational, then somewhat peculiar (random) expansion of the galaxies, farther on the moderate "Hubble law" escape, then the many named accelerative outward expansion, first found by supernova measurements. While our universe rushes away from us (and does so wherever we happen to be) the big bang remnant, singular as ever, has rained particles (albeit diminished) upon us. The microwave background is one remnant -- recombination of electrons and protons to create hydrogen. This happens in the lab at 3000K, which when divided by 2.7K, just happens to yield the redshift (Z≈1000) of the MBR.

The question remains, how does the ultimate outward cosmic background radiation (CBR, not just from microwave horns) correspond to the inner one of particle accelerators? When we look to the sky we see a rain of photons, when we look to the ground we feel the pull of gravitons. What might be interesting to measure is the entropy of the outer flow against that of the inner. Pointing our telescopes farther unravels earliest times; nearer do our microscopes enable uncertainty. We learn that out of high energy condense the quanta of fundamental forces.

Can you give me some specific equations to look at?

Again I am not a physicist, but I do know a little bit about mathematics.

One thing that is interesting is that there is an idea that the universe is actually holographic. Now if this is the case structurally (like the interference pattern you get when you look at a real holographic film itself), then this has huge consequences for entropy.

In order for a hologram to retain its structural integrity (in terms of the actual information it represents), what this means is that there is basically a form of global entanglement. The effects on entropy are very big since if we are able to reduce some or all of the information for some finite sub-region of our state-space, then it means that changes will propagate through the entire system in both microscopic and macroscopic manners.

Now again, I have to point out that I am not a physicist you will have to give me equations and if possible, also a bit of extra context behind your question to give me some physical intuition.

Also the holographic nature if it exists in a kind of 'space-time' manner also means that the entanglement is not prevalent for things at one 'slice' of time, but rather across space-time as a whole. The effects of this kind of entanglement, if it existed, would mean that not only would it be seen in entropy calculations, but also that if it had the properties of a hologram information packet, that you could experimentally check whether the entropy pattern matches that of a hologram as well. This would be a nice physics experiment ;)

With regard to the evolution of forces, to put this into context of entropy, again you have to see where conditional entropies are minimized not only under the raw data, but also under transformations as well.

The thing is that if there is an order that is being created (remember there can be many many different orders in a highly complex system with many interactions going on) then what you would do is to extract a significant order and make an inference about what is happening. You would want to extract orders that minimize entropy in a maximized state-space for the highest conditional order possible (when I say conditional order I mean with respect to a joint distributions that has a higher number of initial states with respect to the rest of the states.)

In terms of the evolution of not only the physical state itself in space-time but also the forces, again you have to see where the order is.

If you want to conjecture why a particular set of 'forces' have been chosen, then again relate these to state-space in terms of the best orders that can be obtained. If it turns out that the orders vanish, or if the system 'blows up' and becomes 'unstable' with respect to existing orders that are extrapolated from the current system, then you have a way of contextually describing when you interpret what the orders mean 'in english' from their mathematical counterparts why the forces 'are what they are' vs 'are what they could be'. This kind of thing would strengthen what you know as the 'Anthropic Principle' and other ideas similar to it.

For the Hubble stuff, it would be helpful to give some equations and if possible some extra context to what you are saying. Again I'm not a physicist.

Finally with respect to your last statement, again I don't see things in terms of gravitons, or other force communicators required to make physical intuition: I see things mathematically in the most general non-local manner possible. In terms of physical intuition, it is not preferrable to do it this way because physics is a very specific endeavor that is rich of complexity at even the smallest scales and for specificity and clarification, requires one usually to see things in a local context.

Now the above might sound arrogant, but the reason I say this is because with my background and experiences, do not for whatever reason see things this way. I see things from a different perspective which can be beneficial and not so beneficial, just as every perspective has its benefits and limitations.

It would be interested to also get your feedback as well on my responses if you don't mind just to get some relativity for my comments. :)
 
  • #48
Loren Booda said:
Is an infinite series of [nonrepeating] random numbers possible?

That is, can the term "random" apply to a [nonrepeating] infinite series?

It seems to me that Cantor's logic might not allow the operation of [nonrepeating] randomization on a number line approaching infinity.

Technically, no. Eventually, if it is truly infinite, after all the googolplexes of combinations of numbers, it will repeat. Randomness is only based on the time that you study it for. If you have 0.1256627773728172818918268162, that obviously doesn't repeat. But if you let it continue, it will repeat eventually.
 
  • #49
AntiPhysics said:
Technically, no. Eventually, if it is truly infinite, after all the googolplexes of combinations of numbers, it will repeat. Randomness is only based on the time that you study it for. If you have 0.1256627773728172818918268162, that obviously doesn't repeat. But if you let it continue, it will repeat eventually.

What about a number like the decimal expansion of pi?
 
  • #50
AntiPhysics said:
Technically, no. Eventually, if it is truly infinite, after all the googolplexes of combinations of numbers, it will repeat. Randomness is only based on the time that you study it for. If you have 0.1256627773728172818918268162, that obviously doesn't repeat. But if you let it continue, it will repeat eventually.

That is NOT true. Only rational numbers repeat eventually.
 
  • #51
chiro,

I respect that this is a mathematical forum, so I will try to remain conscious about the topic of this thread. My apologies for the lack of hard equations. Such relations below will often be expressed in "English." I struggle to provide the best descriptions possible. Coding is an area which I am not familiar with. Do you feel that our exchange is productive? I appreciate your contributions.

__________

http://en.wikipedia.org/wiki/Holographic_principle -- Black hole entropy
The holographic principle was inspired by black hole thermodynamics, which implies that the maximal entropy in any region scales with the radius squared, and not cubed as might be expected. In the case of a black hole, the insight was that the informational content of all the objects which have fallen into the hole can be entirely contained in surface fluctuations of the event horizon. The holographic principle resolves the black hole information paradox within the framework of string theory.
. . .
An object with entropy is microscopically random, like a hot gas. A known configuration of classical fields has zero entropy: there is nothing random about electric and magnetic fields, or gravitational waves. Since black holes are exact solutions of Einstein's equations, they were thought not to have any entropy either.

But Jacob Bekenstein noted that this leads to a violation of the second law of thermodynamics. If one throws a hot gas with entropy into a black hole, once it crosses the horizon, the entropy would disappear. The random properties of the gas would no longer be seen once the black hole had absorbed the gas and settled down. The second law can only be salvaged if black holes are in fact random objects, with an enormous entropy whose increase is greater than the entropy carried by the gas.

Bekenstein argued that black holes are maximum entropy objects—that they have more entropy than anything else in the same volume. In a sphere of radius R, the entropy in a relativistic gas increases as the energy increases. The only limit is gravitational; when there is too much energy the gas collapses into a black hole. Bekenstein used this to put an upper bound on the entropy in a region of space, and the bound was proportional to the area of the region. He concluded that the black hole entropy is directly proportional to the area of the event horizon.

Stephen Hawking had shown earlier that the total horizon area of a collection of black holes always increases with time. The horizon is a boundary defined by lightlike geodesics; it is those light rays that are just barely unable to escape. If neighboring geodesics start moving toward each other they eventually collide, at which point their extension is inside the black hole. So the geodesics are always moving apart, and the number of geodesics which generate the boundary, the area of the horizon, always increases. Hawking's result was called the second law of black hole thermodynamics, by analogy with the law of entropy increase, but at first, he did not take the analogy too seriously.

Hawking knew that if the horizon area were an actual entropy, black holes would have to radiate. When heat is added to a thermal system, the change in entropy is the increase in mass-energy divided by temperature:

dS = dM/T

If black holes have a finite entropy, they should also have a finite temperature. In particular, they would come to equilibrium with a thermal gas of photons. This means that black holes would not only absorb photons, but they would also have to emit them in the right amount to maintain detailed balance.

Time independent solutions to field equations don't emit radiation, because a time independent background conserves energy. Based on this principle, Hawking set out to show that black holes do not radiate. But, to his surprise, a careful analysis convinced him that they do, and in just the right way to come to equilibrium with a gas at a finite temperature. Hawking's calculation fixed the constant of proportionality at 1/4; the entropy of a black hole is one quarter its horizon area in Planck units.

The entropy is proportional to the logarithm of the number of microstates, the ways a system can be configured microscopically while leaving the macroscopic description unchanged. Black hole entropy is deeply puzzling — it says that the logarithm of the number of states of a black hole is proportional to the area of the horizon, not the volume in the interior.

__________

[Speculation]: Regarding the "black hole information paradox," a black hole's "singularity" may be a composite of quantum black holes. Information about the "singularity" would manifest at the black hole horizon as the only variables we may know about a black hole: mass, spin, and charge (and derivations thereof). The extreme symmetry of the Schwarzschild black hole transfers coherently (much like an "isotropic laser" or "holograph") such information that is allowed about the singularity.

__________

Remember the Heisenberg uncertainty principle applies for all quanta: a very small mass complements a very large radius: ΔrΔp≥h, or ΔrΔcm≥h. In other words, small measurements relate to large ones through their action, or units of Planck's constant.

r=radius of action, p=momentum of action, c=speed of light in vacuo, m=mass of quantum, h=Planck's constant.

_________

[Speculation]: M* is the characteristic mass of quantum gravity. This Planck mass demarcates exclusively black hole masses above from those of quanta below. Symmetry between these regions implies a duality for the two classes of entities. The Planck (quantum) black hole, with its mass M*, itself shares and interrelates properties of black holes and quanta. Since inverting the mass scale around M* compares black holes and quanta one-to-one, a black hole could be a real quantum "inside-out" - in terms of that scale - and vice versa:

(Mblack hole·Mquantum)1/2=MPlanck, where M is mass.

__________

http://en.wikipedia.org/wiki/Peculiar_velocityIn physical cosmology, the term peculiar velocity (or peculiar motion) refers to the components of a receding galaxy's velocity that cannot be explained by Hubble's law.

According to Hubble, and as verified by many astronomers, a galaxy is receding from us at a speed proportional to its distance. The Hubble distance expansion, approximately r=c/H0, where r is the relative distance a galaxy is from us, c the speed of light and H0 the Hubble constant, about 70 (km/s)/Mpc. (That is, kilometers per second per megaparsec.)

Galaxies are not distributed evenly throughout observable space, but typically found in groups or clusters, ranging in size from fewer than a dozen to several thousands. All these nearby galaxies have a gravitational effect, to the extent that the original galaxy can have a velocity of over 1,000 km/s in an apparently random direction. This ["peculiar"] velocity will therefore add, or subtract, from the radial velocity that one would expect from Hubble's law.

The main consequence is that, in determining the distance of a single galaxy, a possible error must be assumed. This error becomes smaller, relative to the total speed, as the distance increases.

A more accurate estimate can be made by taking the average velocity of a group of galaxies: the peculiar velocities, assumed to be essentially random, will cancel each other, leaving a much more accurate measurement.

Models attempting to explain accelerating expansion include some form of dark energy. The simplest explanation for dark energy is that it is a cosmological constant or vacuum energy.

http://en.wikipedia.org/wiki/Cosmological_constant -- The cosmological constant Λ appears in Einstein's modified field equation in the form of

Rμν -(1/2)Rgμν + Λgμν = 8∏G/c4Tμν

where R and g pertain to the structure of spacetime, T pertains to matter and energy (thought of as affecting that structure), and G and c are conversion factors that arise from using traditional units of measurement. When Λ is zero, this reduces to the original field equation of general relativity. When T is zero, the field equation describes empty space (the vacuum).

The cosmological constant has the same effect as an intrinsic energy density of the vacuum, ρvac (and an associated pressure).
In this context it is commonly defined with a proportionality factor of 8∏ Λ = 8∏ρvac, where unit conventions of general relativity are used (otherwise factors of G and c would also appear). It is common to quote values of energy density directly, though still using the name "cosmological constant".

A positive vacuum energy density resulting from a cosmological constant implies a negative pressure, and vice versa. If the energy density is positive, the associated negative pressure will drive an accelerated expansion of empty space.

__________

Thus the expansion "ladder" is largely determined by peculiar velocity, the Hubble expansion and a parameter like the cosmological constant.

__________

[Speculation]: Entropy of a black hole is proportional to its surface area. Entropy of conventional matter is proportional to its volume. I assume entropy of a concave spherical cosmological horizon, of reciprocal geometry, to be that of an inverted Schwarzschild black hole -- thus differing in their sign of curvature -- that is, with geodesics converging rather than diverging.

Aside: a simple dimensional argument considering conventional entropy (three dimensional) and black hole entropy (two dimensional) yields individual quanta having entropy proportional (one dimensional) to their propagation.

[Question]: A Schwarzschild black hole of radius RB has entropy proportional to its surface area. Consider it within a closed ("Schwarzschild") universe of radius RH>RB. What is their relative entropy? Remember the universe as having radiating curvature relatively negative to that of the inner black hole.
 
  • #52
Loren Booda said:
chiro,

I respect that this is a mathematical forum, so I will try to remain conscious about the topic of this thread. My apologies for the lack of hard equations. Such relations below will often be expressed in "English." I struggle to provide the best descriptions possible. Coding is an area which I am not familiar with. Do you feel that our exchange is productive? I appreciate your contributions.

Thankyou Loren Booda. I'm actually learning a lot myself and you've motivated me to look at a few things as a result of this discussion.

I'll attack this question in a few parts.

http://en.wikipedia.org/wiki/Holographic_principle -- Black hole entropy The holographic principle was inspired by black hole thermodynamics, which implies that the maximal entropy in any region scales with the radius squared, and not cubed as might be expected. In the case of a black hole, the insight was that the informational content of all the objects which have fallen into the hole can be entirely contained in surface fluctuations of the event horizon. The holographic principle resolves the black hole information paradox within the framework of string theory.
. . .
An object with entropy is microscopically random, like a hot gas. A known configuration of classical fields has zero entropy: there is nothing random about electric and magnetic fields, or gravitational waves. Since black holes are exact solutions of Einstein's equations, they were thought not to have any entropy either.

But Jacob Bekenstein noted that this leads to a violation of the second law of thermodynamics. If one throws a hot gas with entropy into a black hole, once it crosses the horizon, the entropy would disappear. The random properties of the gas would no longer be seen once the black hole had absorbed the gas and settled down. The second law can only be salvaged if black holes are in fact random objects, with an enormous entropy whose increase is greater than the entropy carried by the gas.

Bekenstein argued that black holes are maximum entropy objects—that they have more entropy than anything else in the same volume. In a sphere of radius R, the entropy in a relativistic gas increases as the energy increases. The only limit is gravitational; when there is too much energy the gas collapses into a black hole. Bekenstein used this to put an upper bound on the entropy in a region of space, and the bound was proportional to the area of the region. He concluded that the black hole entropy is directly proportional to the area of the event horizon.

Stephen Hawking had shown earlier that the total horizon area of a collection of black holes always increases with time. The horizon is a boundary defined by lightlike geodesics; it is those light rays that are just barely unable to escape. If neighboring geodesics start moving toward each other they eventually collide, at which point their extension is inside the black hole. So the geodesics are always moving apart, and the number of geodesics which generate the boundary, the area of the horizon, always increases. Hawking's result was called the second law of black hole thermodynamics, by analogy with the law of entropy increase, but at first, he did not take the analogy too seriously.

Hawking knew that if the horizon area were an actual entropy, black holes would have to radiate. When heat is added to a thermal system, the change in entropy is the increase in mass-energy divided by temperature:

dS = dM/T

If black holes have a finite entropy, they should also have a finite temperature. In particular, they would come to equilibrium with a thermal gas of photons. This means that black holes would not only absorb photons, but they would also have to emit them in the right amount to maintain detailed balance.

Time independent solutions to field equations don't emit radiation, because a time independent background conserves energy. Based on this principle, Hawking set out to show that black holes do not radiate. But, to his surprise, a careful analysis convinced him that they do, and in just the right way to come to equilibrium with a gas at a finite temperature. Hawking's calculation fixed the constant of proportionality at 1/4; the entropy of a black hole is one quarter its horizon area in Planck units.

The entropy is proportional to the logarithm of the number of microstates, the ways a system can be configured microscopically while leaving the macroscopic description unchanged. Black hole entropy is deeply puzzling — it says that the logarithm of the number of states of a black hole is proportional to the area of the horizon, not the volume in the interior.

I wanted to comment specifically on something first before I attack the rest of your post.

If this result is true, then the fact that the entropy is bounded for any finite sub-region tells us that there is indeed a mechanism used to make sure things don't get too disorderly and as a conjecture I imagine that the nature of gravity with regards to the black hole phenomena helps create this form of stabilization.

In terms of what we have talked about before regarding the idea of bounding entropy for a finite-subregion so that at the minimum you don't get a level of unmanageable chaos, this idea of a mechanism to make sure that this doesn't happen makes sense at least from this perspective. I'm not saying that it's necessarily the only reason for the result of these interactions, but I do think it is one plausible thing that could be used to analyze exactly why this is happening.

I have a few books on this kind of thing tucked away somewhere but I haven't really had the motivation to go into it in detail, so I'm considered looking at these results at a later date.

The interesting thing to take note of is how the radiation (from the black hole) varies not only with the area of the event horizon, but also with the temperature.

The reason for the above inquiry is that if you know roughly how the entropy of the information exchange is happening (not necessarily in an atomic way but in a macroscopic way), then what you can do is you can look at that exchange and understand what happens in the most chaotic circumstances.

Also with regards to the idea of it being based on area and not to do with volume, I am going to go make a wild speculation and say that because the black hole represents the situation with the most entropy for that particular region, then what you are looking at is a situation where for a given volume, the entropy has reached a maximum and therefore if a black hole maintains this entropy characteristic, the entropy itself will not change despite what is going on inside the black-hole, if indeed the black-hole scenario represents the situation of a maximum-entropy.

With regard to the area problem, what I would say for this is that if a black-hole has to have a spherical volume, then if the projection of the black-hole volume onto the surface where the horizon is measured is strictly proportional to the area, then it is no surprise that the entropy is in fact proportional to the area. If the region enclosed by the event horizon is circular, and the volume itself relates to a sphere, then you can see that the area is indeed proportional to the volume of the region that the black hole is enclosed in.

In fact, intuitively we would expect something that had the characteristics of a black-hole (i.e. if it was under a gravitational force so big where every part of the object would be accelerated towards the very centre of the body), that the black hole itself would be a spherical object. The only thing that remains is to see whether the event horizon is itself a circular object and if this is the case, then it is not surprising that the entropy is proportional to the area.

Also if the black-hole represents the state of maximum entropy for that particular configuration within that given space, then the entropy would be the maximum allowed.

Now the really interesting thing to take note of is how the entropy changes over time. The thing that I would pay attention to, is exactly how the area of the event horizon changes, how the radiation emission from the black hole changes, and also how the temperature changes under certain configurations.

The reason I say the above is that if the black-hole really is the state of maximum entropy, then understanding what happens in this case will tell you essentially how things become 're-ordered' again.

Again the motivation for this line of reasoning is the example of a system that is allowed to become too disordered and as a result so chaotic that it ends up destabilizing the whole system if it is allowed to propagate willy nilly. If the black-hole at least in part helps stop this situation from occurring, then what this phenomena will tell you is how for lack of a better word, God deals with this situation: in other words, how stability is maintained of the entire system.

In fact, the energy conservation rules for black-holes will tell an awful lot about how orders of all kinds are actually maintained.
 
  • #53
[Speculation]: Regarding the "black hole information paradox," a black hole's "singularity" may be a composite of quantum black holes. Information about the "singularity" would manifest at the black hole horizon as the only variables we may know about a black hole: mass, spin, and charge (and derivations thereof). The extreme symmetry of the Schwarzschild black hole transfers coherently (much like an "isotropic laser" or "holograph") such information that is allowed about the singularity.

The only comment I have on this is that if the radiation (or any other information exchange between the black hole and other regions regardless of how it happens) gives us information about the entropy, temperature or other characteristics then I imagine this would give a lot of information about the black hole.

In terms of mass, if the radiation corresponds to containing temperature information, then mass information would be communicated. In terms of spin and charge, I don't know enough about these characteristics to answer this currently.

Remember the Heisenberg uncertainty principle applies for all quanta: a very small mass complements a very large radius: ΔrΔp≥h, or ΔrΔcm≥h. In other words, small measurements relate to large ones through their action, or units of Planck's constant.

r=radius of action, p=momentum of action, c=speed of light in vacuo, m=mass of quantum, h=Planck's constant.

I'm going to take a look at this later.

[Speculation]: M* is the characteristic mass of quantum gravity. This Planck mass demarcates exclusively black hole masses above from those of quanta below. Symmetry between these regions implies a duality for the two classes of entities. The Planck (quantum) black hole, with its mass M*, itself shares and interrelates properties of black holes and quanta. Since inverting the mass scale around M* compares black holes and quanta one-to-one, a black hole could be a real quantum "inside-out" - in terms of that scale - and vice versa:

(Mblack hole·Mquantum)1/2=MPlanck, where M is mass.

Before I comment on this can you point me to either a paper or an article (or something along those lines) that gives me a bit more background for what you are saying?

Doesn't have to be absolutely formal: I just need a bit of context and background.

http://en.wikipedia.org/wiki/Peculiar_velocityIn physical cosmology, the term peculiar velocity (or peculiar motion) refers to the components of a receding galaxy's velocity that cannot be explained by Hubble's law.

According to Hubble, and as verified by many astronomers, a galaxy is receding from us at a speed proportional to its distance. The Hubble distance expansion, approximately r=c/H0, where r is the relative distance a galaxy is from us, c the speed of light and H0 the Hubble constant, about 70 (km/s)/Mpc. (That is, kilometers per second per megaparsec.)

Galaxies are not distributed evenly throughout observable space, but typically found in groups or clusters, ranging in size from fewer than a dozen to several thousands. All these nearby galaxies have a gravitational effect, to the extent that the original galaxy can have a velocity of over 1,000 km/s in an apparently random direction. This ["peculiar"] velocity will therefore add, or subtract, from the radial velocity that one would expect from Hubble's law.

The main consequence is that, in determining the distance of a single galaxy, a possible error must be assumed. This error becomes smaller, relative to the total speed, as the distance increases.

A more accurate estimate can be made by taking the average velocity of a group of galaxies: the peculiar velocities, assumed to be essentially random, will cancel each other, leaving a much more accurate measurement.

Models attempting to explain accelerating expansion include some form of dark energy. The simplest explanation for dark energy is that it is a cosmological constant or vacuum energy.

One comment I have with this is the idea of 'random speeds'. Again this is from a computational perspective.

I would go further than what you have done and consider every entity relative to everything else and then draw conclusions from that rather than from just a measure of what you are saying.

The thing is, if there is some kind of interaction going on, then there will exist a transformation of your raw data with minimal entropy and if that entropy under a particular transformation is 0 then this describes your interaction in a completely deterministic manner. Even if it is not exactly zero, it's still good enough for most practical purposes to be useful.

Again I don't see things in a physical context: I don't see things in terms of particles, forces, electrons, space-time surfaces and so on: to me it's just information with various orders and also I am not completely aquainted with all of the definitions used in physics (I know some though). I would look at a system in a general way, try and extract various orders and then interpret what those mean in the context of the interpretation of the information presented. Personally, in my view, trying to understand something in a fixed constraint whether that's in terms of human sensory perception to me is not how I look at things: All I see is information.

If this conversation goes deeper that it is now (which is fine by me), then I will have to get acquainted with these definitions and constraints that are being talked about and I hope you bear with me if this is required.

Also finally with regards to 'random speeds'. I will mention this later in this post but the idea of things being 'completely random' doesn't make sense in terms of stability and enforced variability: I will talk about these soon.

http://en.wikipedia.org/wiki/Cosmological_constant -- The cosmological constant Λ appears in Einstein's modified field equation in the form of

Rμν -(1/2)Rgμν + Λgμν = 8∏G/c4Tμν

where R and g pertain to the structure of spacetime, T pertains to matter and energy (thought of as affecting that structure), and G and c are conversion factors that arise from using traditional units of measurement. When Λ is zero, this reduces to the original field equation of general relativity. When T is zero, the field equation describes empty space (the vacuum).

The cosmological constant has the same effect as an intrinsic energy density of the vacuum, ρvac (and an associated pressure).
In this context it is commonly defined with a proportionality factor of 8∏ Λ = 8∏ρvac, where unit conventions of general relativity are used (otherwise factors of G and c would also appear). It is common to quote values of energy density directly, though still using the name "cosmological constant".

A positive vacuum energy density resulting from a cosmological constant implies a negative pressure, and vice versa. If the energy density is positive, the associated negative pressure will drive an accelerated expansion of empty space.

The thing about this analysis is that if you look at this in isolated macroscopic context, then you will probably miss it's role in the context of looking at it with respect to the other mechanisms that exist (in other words, the other forces besides gravity).

With regard to the first issue, I speculated that the behaviour of a black-hole might be the mechanism to not only control entropy for a given finite sub-region for a particular space-time configuration, but also to 'deal' with this situation by creating a situation that effectively either re-directs information in a manner that it can be become more stable or perhaps even to isolate this from other systems as to stop things from going haywire.

Now the thing is that in an accelerating universe where space for a lack of a better word becomes 'stretched', again this could well be designed relative to all other forces to make sure things either 'don't get haywire' or 'don't come to a halt'.

When I say 'don't get haywire' I am talking about a situation where things become too chaotic causes an overall system-wide chaos that is irreversible. The halting problem is the exact opposite: by this I mean that you want to have some kind of minimal gauranteed variation or evolution constraints that allow things to remain dynamic.

Both of the above issues need to be addressed and I also want to say that it is a better way to analyze not only systems in general, but also scientific systems like physics and so on.

The thing is, by comparing the complement of certain models and systems relative to the data and actual models that have been formulated, you can actually give a reason why a particular model is either better or even exists at all with respect to another model simply on the basis of whether one model is sustainable over its evolution vs one that is not.

To do this you need to consider the system as a whole and not as a separate isolated system of its parts and by considering say an accelerating phenomenon without the other things that give a reason why this occurs, then the speculation will be ill-founded with regards to the primary motivation of such a phenomena.

You might see me saying this again and again, but the reason I say this is because without looking at things in terms of both stability and gauranteed evolution constraints (i.e. the same doesn't become static enough to prevent proper evolution), then many things will either be missed or understood. Any system that has the properties of one that evolves properly must have these attributes.

For this reason, I think scientific investigation needs to undertake a major shift from how it currently is going to something more aligned to the above way of thinking. A system that is prone to any kind of unfair arbitrage in any way is something that is not well designed in my opinion and it wouldn't make sense to analyze a system in the context of where you have a situation of unfair arbitrage.

What this non-arbitrage situation corresponds to is something that will need to discussed, debated, clarified and tested against experimentally and otherwise, but in terms of system design I see it as critical that this be used in the most basic of analyses.

Ironically however science is formulated to try and create some kind of certainty out of the uncertainty that we face in which we investigate things more or less to control our surroundings. If a system has been specifically designed to enable a system wide level of non-arbitrage, then it means that this has already been considered in the system design. This philosophically raises an important question and if it holds any water, might make quite a few people depressed.

In fact you could use the above form of analyses to make an inference on whether a particular system has been 'purposely designed' for lack of a better word in comparison to something that has been 'randomly chosen'. This kind of thing would support evidence of whether we really are 'just an accident' or whether this whole thing has been engineered on purpose.

This is speculation, but I don't think this whole thing was random, but rather engineered on purpose due to the amount of evidence for stability in all forms and how everything just naturally 'works together' in many kinds of orders. If I wanted to provide evidence mathematically I would do it from a stability analysis using some of the concepts above, but for now I'm going to base it on observation and anecdotal inference.

[Speculation]: Entropy of a black hole is proportional to its surface area. Entropy of conventional matter is proportional to its volume. I assume entropy of a concave spherical cosmological horizon, of reciprocal geometry, to be that of an inverted Schwarzschild black hole -- thus differing in their sign of curvature -- that is, with geodesics converging rather than diverging.

Aside: a simple dimensional argument considering conventional entropy (three dimensional) and black hole entropy (two dimensional) yields individual quanta having entropy proportional (one dimensional) to their propagation.

Could you elaborate on this please? What do you mean by propagation?

[Question]: A Schwarzschild black hole of radius RB has entropy proportional to its surface area. Consider it within a closed ("Schwarzschild") universe of radius RH>RB. What is their relative entropy? Remember the universe as having radiating curvature relatively negative to that of the inner black hole.

For this particular question, what I would like to know is can you have a black-hole inside a black-hole where there is any freedom for the configuration of the inner-most black-hole inside the outer-most black hole.

If the entropy conditions are fixed for 'any' black-hole with regards to characteristics like temperature and subsequently entropy, then the thing that I would ask is 'does every sub-region of any black-hole contain entropy corresponding to the volume of that sub-region?'

If the answer is yes, then the answer would be simply be equal to the ratio of the inner object with respect to the volume of the entire object.

The reason why I would say the above is that if a black hole is the realization of something with maximum entropy, then in terms of the conditional distributions, all of these would also have to yield maximum entropy (remember our conversation before on this).

As a result of this, if it is true, it means that every sub-region of the black-hole also has maximal entropy for that region: This means that we should get the proportional characteristic I have mentioned.

Now if for some reason there was a deviation of the maximum entropy principle for any sub-region of the space, this would mean that a black-hole with this particular configuration would not have maximal entropy which to me is a contradiction.

If for some reason this could happen, what this means is that in a black-hole you could pretty much create order in any way you saw fit if you understood the mechanism because the fact that there is a decrease in entropy for some sub-region in a maximal outer black-hole means that you can engineer directly everything if you understand how to lower entropy in various ways. This would correspond to the ability to create any kind of order that you wanted to if you knew how to do it.
 
  • #54
Loren Booda said:
Do you feel that our exchange is productive? I appreciate your contributions.

I do feel that our exchange is productive, but I would be interested in more feedback from you if you could please. I don't want to end up doing all the talking: I appreciate any kind of feedback whether you think I'm out of my mind or making sense.
 
  • #55
micromass said:
That is NOT true. Only rational numbers repeat eventually.

Just think about it in more abstract terms, this is only textbook knowledge. If a number is random, that means there is an infinite amount of possibilities, and if there is an infinite amount of possibilities, you have the chance of it repeating at one point, be it after 10 digits or after a googolplex of digits. Sometimes you are only limited by which what shows up on a calculator display before cutting off.
 
  • #56
chiro said:
What about a number like the decimal expansion of pi?

Pi is a great example of my hypothesis. From what we have studied, pi is 3.1415926535. Or it could be 3.14159265358979323. Or even 1 million digits. In those 1 million digits, it doesn't repeat. Pi is a non terminating decimal, so who's to say that it will never reapeat? It has the "opportunity" to, so to speak. If someone could live forever, but in just one time period, let's say just today, they would eventually do everything possible and go everywhere possible in the world.
 
  • #57
Yes, you have that possibility- you said earlier it must happen.

But I think the reason chiro responded as he did is the interpretation of "repeat". If you mean some "pattern" of digits will repeat at least once further down the list of digits, that is pretty obvious- there are only 10 digits so obviously digits must repeat a lot! There are only 10^n possible n digit patterns so obviously some such must eventually repeat. But Chiro was interpreting "repeat" as meaning that at some point the digits become "AAAAAA..." where A is a specific finite sequence of digits that keeps repeating and there are no other digits. That is true only for rational numbers- and "almost all" real numbers are NOT rational.
 
  • #58
AntiPhysics said:
Just think about it in more abstract terms, this is only textbook knowledge. If a number is random, that means there is an infinite amount of possibilities, and if there is an infinite amount of possibilities, you have the chance of it repeating at one point, be it after 10 digits or after a googolplex of digits. Sometimes you are only limited by which what shows up on a calculator display before cutting off.

AntiPhysics said:
Pi is a great example of my hypothesis. From what we have studied, pi is 3.1415926535. Or it could be 3.14159265358979323. Or even 1 million digits. In those 1 million digits, it doesn't repeat. Pi is a non terminating decimal, so who's to say that it will never reapeat? It has the "opportunity" to, so to speak. If someone could live forever, but in just one time period, let's say just today, they would eventually do everything possible and go everywhere possible in the world.

Pi has been PROVEN not to repeat ever. The only repeating numbers are rational numbers.

Please don't talk about something you know nothing about.
 
  • #60
micromass said:
Pi has been PROVEN not to repeat ever. The only repeating numbers are rational numbers.

Please don't talk about something you know nothing about.

Give me some scientific evidence proving pi doesn't repeat. And no, not a Wikipedia page simply stating it doesn't. And sometimes, as I said before, you are only limited by the technology you are using. If someone calculates pi to the quintillionth digit, and it doesn't reapeat in that string of numbers, how do you know it doesn't start repeating later on, where you don't even know anything about the rest?
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K