Q-reeus said:
You received high praise from one recent poster for an answer in #287 that you may consider 'precise' but to my mind is just a string of words that asserts a generality without really explaining at all. It is trivially true that everything we experience originates from some 'past light cone(s)'. But where is the actual dynamical connection between exterior field point and inwardly hurtling charged matter asymptotically close to being completely engulfed within an EH?
The "dynamical connection" ("dynamical" is kind of an odd word to use since the spacetime is static, but I'll go with it here) is given by the EFE and Maxwell's equations. In the case of a neutral massive object collapsing to a Schwarzschild BH, the vacuum EFE determines how the spacetime curvature produced by the stress-energy in the object propagates through the vacuum region to any point. In the case of a charged massive object collapsing to a R-N BH, the EFE with a particular EM field tensor as source determines how the curvature produced by the stress-energy plus charge propagates, and Maxwell's equations determine how the EM field propagates. There is exact math behind all of it, just as I said.
Q-reeus said:
On the other hand, if I make the point that for there to be any finite exterior BH E field, what most I think reasonably understand by 'gravitational redshift' can have no effect on any EH crossing charge acting as E field source (note this is not an RN situation but neutral BH fed by infall). A rather obvious conclusion I would have thought, but to you it is terribly imprecise and too intuitive to make any sense of.
Because I don't see any exact math behind it. I see you reasoning with intuitive concepts without going back to the fundamentals that underlie them. The fundamental laws, the EFE and Maxwell's equations, don't say anything about "redshift". That's a derived concept that can be used to label certain aspects of certain solutions. It may or may not apply in the case you're talking about.
Q-reeus said:
So, in frustration with that line of response, I furnished for your consideration and response numbers of what seems to me are perfectly straight-forward scenarios - examples in #272, #294, and you still manage to make them into 'confused', imprecise' situations somehow impossible to deal with.
Same comment: I don't see the exact math behind them. You don't know any of the exact math, so you can't furnish it; and when I try to match up what you're saying to what I know of the exact math, I don't come up with a match. As I've said before in a discussion like this with you, if I read through one of your scenarios and I can't figure out how it fits into the math, even if what you are saying contains an apparent "paradox" with GR, my conclusion, if you force me to make one, will be that there is some mistake in your scenario that I'm not smart enough to spot, not that GR is wrong. The former is far more likely, IMO, than the latter. It's not that I'm not interested; it's just that if I can't figure out how to translate what you're saying into the fundamentals, the math, I have no way of telling whether it's right, wrong, or not even wrong. So what am I supposed to do?
Q-reeus said:
E field distribution is unaffected by gravity *if* RN BH is possible.
And what does "E field distribution is unaffected by gravity" mean? I know you can't tell me what it means in the math, but can you at least say what specific observation I can make to tell me whether or not the E field distribution is affected? All the ones you've proposed so far have boiled down to an effect of transmitting something through a curved spacetime, which as I and others have said, is obviously due to the spacetime in between, not to the original "source" of what is being transmitted.
Q-reeus said:
Bottom line question to you clearly was - will field lines distort at all.
And how do I tell, by observation/experiment, whether or not the field lines are "distorted"? Give a specific description set in your scenario, not just generalities about test charges and detectors. Why must I always do all the work?
Q-reeus said:
Did I really need to elaborate?
Yes, because all the things I can come up with that "dipole field strength" could mean, GR can calculate for you, as I said, and none of them pose any contradiction. So if that's the best you can do, your example proves nothing.
Q-reeus said:
Ah - "simply the result of combining the two". So absolutely no assumptions are made then as to *how* exactly the two are combined?
Not in the exact math; combining the two is simple and straightforward and requires no "assumptions" beyond the basics necessary to express any physical law in curved spacetime. All the GR textbooks I'm familiar with treat this exact case in some detail. MTW spends several chapters on it.
Q-reeus said:
Well let's try it one more time - as best I care to try at being suffciently precise, here's yet another scenario
This seems to be your standard response in these discussions: when in doubt, pile on another scenario. :sigh:
I'll go ahead and take a look at this, but let's suppose that I come back and say that the radiation emitted by the dipole (which must be time-dependent to radiate, btw, I trust you've taken that into account even though it doesn't appear in your formulation) *is* redshifted when it is seen by an observer far away, as compared to how it is seen by an observer right next to the dipole. What will that prove?
To you, it will prove that somehow the R-N solution is inconsistent. To me, and probably to most others who are participating in this thread, it will mean that the curved spacetime in between the dipole and the observer has an effect on the radiation, just as one would expect, and will be perfectly consistent. What do we do then?
This is why these discussions always go on forever with no resolution.