MHB Is f in the vector space of cubic spline functions?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $S_{X,3}$ be the vector space of cubic spline functions on $[-1,1]$ in respect to the points $$X=\left \{x_0=-1, x_1=-\frac{1}{2}, x_2=0, x_3=\frac{1}{2}, x_4\right \}$$ I want to check if the function $$f(x)=\left ||x|^3-\left |x+\frac{1}{3}\right |^3\right |$$ is in $S_{X,3}$.

We have that \begin{align*}f(x)&=\left ||x|^3-\left |x+\frac{1}{3}\right |^3\right |\\ & =\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^3 , & |x|^3-\left |x+\frac{1}{3}\right |^3\geq 0 \\-|x|^3+\left |x+\frac{1}{3}\right |^3 , & |x|^3-\left |x+\frac{1}{3}\right |^3<0\end{cases} \\ & =\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^3 , & |x|^3\geq \left |x+\frac{1}{3}\right |^3 \\-|x|^3+\left |x+\frac{1}{3}\right |^3 , & |x|^3<\left |x+\frac{1}{3}\right |^3\end{cases} \\ & = \begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^3 , & |x|\geq \left |x+\frac{1}{3}\right | \\-|x|^3+\left |x+\frac{1}{3}\right |^3 , & |x|<\left |x+\frac{1}{3}\right |\end{cases}\end{align*}

The function is piecewise a polynomial of degree smaller or equal to $3$, right?

Now we have to check if $f$ is continuous on $[-1,1]$.

How could we continue to get the definition of $f$ ? (Wondering)
 
Mathematics news on Phys.org
Yes. And those pieces should be between those $x_i$.
That is, between each $x_i$ and $x_{i+1}$ we should have a polynomial of degree $\le 3$.
It doesn't look like we will get that, since the derivative at $x=-\frac 13$ will be discontinuous. (Worried)

mathmari said:
Now we have to check if $f$ is continuous on $[-1,1]$.

How could we continue to get the definition of $f$ ?

How about we start with the inner expression $|x|^3-\left |x+\frac{1}{3}\right|$ and expand it for the cases:
\begin{cases} -1 \le x<-\frac 13 \\ -\frac 13\le x < 0 \\ 0 \le x \le 1\end{cases}
Then all the absolute signs should disappear. (Thinking)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
2K
Replies
4
Views
1K
Replies
4
Views
11K
Replies
1
Views
11K
Back
Top