MHB Is f in the vector space of cubic spline functions?

AI Thread Summary
The discussion centers on determining if the function f(x) = ||x|^3 - |x + 1/3|^3| belongs to the vector space of cubic spline functions S_{X,3} defined on the interval [-1,1]. It is established that f(x) is piecewise defined and consists of polynomials of degree less than or equal to 3. However, concerns arise regarding the continuity of f, particularly at the point x = -1/3, where the derivative is expected to be discontinuous. Participants suggest expanding the inner expression to eliminate absolute values and better analyze continuity across the defined intervals. The conclusion leans towards the idea that f may not meet the criteria for inclusion in S_{X,3}.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $S_{X,3}$ be the vector space of cubic spline functions on $[-1,1]$ in respect to the points $$X=\left \{x_0=-1, x_1=-\frac{1}{2}, x_2=0, x_3=\frac{1}{2}, x_4\right \}$$ I want to check if the function $$f(x)=\left ||x|^3-\left |x+\frac{1}{3}\right |^3\right |$$ is in $S_{X,3}$.

We have that \begin{align*}f(x)&=\left ||x|^3-\left |x+\frac{1}{3}\right |^3\right |\\ & =\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^3 , & |x|^3-\left |x+\frac{1}{3}\right |^3\geq 0 \\-|x|^3+\left |x+\frac{1}{3}\right |^3 , & |x|^3-\left |x+\frac{1}{3}\right |^3<0\end{cases} \\ & =\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^3 , & |x|^3\geq \left |x+\frac{1}{3}\right |^3 \\-|x|^3+\left |x+\frac{1}{3}\right |^3 , & |x|^3<\left |x+\frac{1}{3}\right |^3\end{cases} \\ & = \begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^3 , & |x|\geq \left |x+\frac{1}{3}\right | \\-|x|^3+\left |x+\frac{1}{3}\right |^3 , & |x|<\left |x+\frac{1}{3}\right |\end{cases}\end{align*}

The function is piecewise a polynomial of degree smaller or equal to $3$, right?

Now we have to check if $f$ is continuous on $[-1,1]$.

How could we continue to get the definition of $f$ ? (Wondering)
 
Mathematics news on Phys.org
Yes. And those pieces should be between those $x_i$.
That is, between each $x_i$ and $x_{i+1}$ we should have a polynomial of degree $\le 3$.
It doesn't look like we will get that, since the derivative at $x=-\frac 13$ will be discontinuous. (Worried)

mathmari said:
Now we have to check if $f$ is continuous on $[-1,1]$.

How could we continue to get the definition of $f$ ?

How about we start with the inner expression $|x|^3-\left |x+\frac{1}{3}\right|$ and expand it for the cases:
\begin{cases} -1 \le x<-\frac 13 \\ -\frac 13\le x < 0 \\ 0 \le x \le 1\end{cases}
Then all the absolute signs should disappear. (Thinking)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
4
Views
2K
Replies
4
Views
1K
Replies
4
Views
11K
Replies
1
Views
11K
Back
Top