Sam Gralla
- 95
- 1
zonde said:And why do you think that there is any "gravitational energy" at all?
If you can attribute all of the total energy of the system to "matter energy" plus radiation energy without anything left then there is no reason to think that there anything like "field energy".
There is such a thing as "gravitational energy" because gravitational waves carry it. You can precisely characterize the rate at which an isolated system is losing energy to gravitational-wave emission. What you can't do is say that so much of the energy was at one place in spacetime and so much of the energy was elsewhere. or whether the energy "came from" matter or field energy. (Of course, you could try to make such a statement using a "psuedotensor" as somebody brought up, but somebody else could come along with another inequivalent pseudotensor and claim that *that* one was the true gravitational energy. What everyone will agree about is the total energy in the system as well as its rate of change.) People do use "stress-energy pseudotensors" in computations, but that's mainly for convenience in performing some specific computation. All claims about a "true" local gravitational energy density have disappeared from the literature at this point. (There is a community still looking for "quasi-local" gravitational energy, but that doesn't seem to work very well either.)
You may be trying to call this sort of energy "radiation energy" so you don't need "field energy". But there are reasons for saying that even a non-radiating system has "gravitational binding energy" (that can't be localized). For example, in the Newtonian limit of GR the energy/mass of an isolated system can be written as an integral over the mass density of the matter. But as soon as you go back to GR (or just a post-Newtonian correction), this property is lost. What is the other contribution? It makes sense to think of it as energy in the field. But there's no way to write it as an integral over matter plus an integral over field, so again it makes sense to say "gravitational energy exists but can't be localized".