Hello(adsbygoogle = window.adsbygoogle || []).push({});

I know this topic must have been done to death already, but i can't seem to find a satisfying answer.

As the title suggests, my question is, what experiment proves that the uncertainty principle is not just a result of our flawed measuring techniques? From what i understand, when we probe a particle with a photon of a given wavelength, we change it's momentum (trajectory). The momentum then becomes a wave (probability) function, so we don't know exactly how much the momentum was changed, hence the uncertainty. If we probe the particle with a more charged photon (lower wavelength), the particle's position can be determined with greater accuracy, but it's momentum was changed even more (still not known for exactly how much). Now this experiment only proves the lack of our measuring abilities.

I've also found this youtube link http://www.youtube.com/watch?v=KT7xJ0tjB4A" with the laser through a single slit experiment. Isn't this simple diffraction? So is Heisenberg's principle just a way to describe how we see the physical model or is it a property of nature?

Sorry for the long explanation, i just wanted to give some context to my questions. Thank you for any help. Cheers, Val

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is Heisenberg uncertainty principle a problem of our measuring techniques?

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**