I try to avoid the complex logarithm where possible. Since you know that $\displaystyle \begin{align*} e^{i \,z} = 2 \pm \sqrt{3} \end{align*}$, a real number, that means z must be purely imaginary, and you can solve as you would real numbers, just remembering that your value of z will be periodic every $\displaystyle \begin{align*} 2\pi \end{align*}$ units. So
$\displaystyle \begin{align*} e^{i \,z} &= 2\pm \sqrt{3} \\ i \,z &= \ln{ \left( 2 \pm \sqrt{3} \right) } \\ -z &= i\ln{ \left( 2 \pm \sqrt{3} \right) } \\ z &= -i\ln{ \left( 2 \pm \sqrt{3} \right) } \end{align*}$
and remembering that it is multivalued, that means the complete solution is
$\displaystyle \begin{align*} z = -i\ln{ \left( 2 \pm \sqrt{3} \right) } + 2\pi n \textrm{ where } n \in \mathbf{Z} \end{align*}$