- #1
farolero
- 166
- 10
"Liquid immersion provides a way to reduce the physical stress of G forces. Forces applied to fluids are distributed as omnidirectional pressures. Because liquids cannot be practically compressed, they do not change density under high acceleration such as performed in aerial maneuvers or space travel. A person immersed in liquid of the same density as tissue has acceleration forces distributed around the body, rather than applied at a single point such as a seat or harness straps. This principle is used in a new type of G-suit called the Libelle G-suit, which allows aircraft pilots to remain conscious and functioning at more than 10 G acceleration by surrounding them with water in a rigid suit.
Acceleration protection by liquid immersion is limited by the differential density of body tissues and immersion fluid, limiting the utility of this method to about 15 to 20 G.[57] Extending acceleration protection beyond 20 G requires filling the lungs with fluid of density similar to water. An astronaut totally immersed in liquid, with liquid inside all body cavities, will feel little effect from extreme G forces because the forces on a liquid are distributed equally, and in all directions simultaneously. However effects will be felt because of density differences between different body tissues, so an upper acceleration limit still exists.
Liquid breathing for acceleration protection may never be practical because of the difficulty of finding a suitable breathing medium of similar density to water that is compatible with lung tissue. Perfluorocarbon fluids are twice as dense as water, hence unsuitable for this application"
https://en.wikipedia.org/wiki/Liquid_breathing
i wonder how many g can an astronaut endure in breathable fluids accounting for bone density of 1.5 and how many g would produce a cannon to shoot a spaceship with his astronaut inside
any help to find out how visionary verne could have actually been?
Acceleration protection by liquid immersion is limited by the differential density of body tissues and immersion fluid, limiting the utility of this method to about 15 to 20 G.[57] Extending acceleration protection beyond 20 G requires filling the lungs with fluid of density similar to water. An astronaut totally immersed in liquid, with liquid inside all body cavities, will feel little effect from extreme G forces because the forces on a liquid are distributed equally, and in all directions simultaneously. However effects will be felt because of density differences between different body tissues, so an upper acceleration limit still exists.
Liquid breathing for acceleration protection may never be practical because of the difficulty of finding a suitable breathing medium of similar density to water that is compatible with lung tissue. Perfluorocarbon fluids are twice as dense as water, hence unsuitable for this application"
https://en.wikipedia.org/wiki/Liquid_breathing
i wonder how many g can an astronaut endure in breathable fluids accounting for bone density of 1.5 and how many g would produce a cannon to shoot a spaceship with his astronaut inside
any help to find out how visionary verne could have actually been?