MHB Is my vertical component calculation correct?

Dethrone
Messages
716
Reaction score
0
In the structure shown, a cable is attached to the 50 kN weight and to the beam A-D at point B. If the horizontal uniform beam weighs 8 kN/m, determine the following:
(a) The horizontal and vertical component of the force that the pin at D exerts on the beam A-D.
(b) The force in the cable.
...

View attachment 3383

I just want to focus on getting the vertical component right...and I have developed two methods, each of which return a different answer.
1) Taking moments about A (i know doing it about B is simpler):
$$\sum M= T_y -40(2.5)-(T-50)(3)+D_y(5)$$
$$\sum F_y = T_y-40-50+D_y =0$$
$$=T \sin36.9-90+D_y$$

Now solving the two equations, I get $D_y = 61.98 \text{kN}$2) Starting with this line...
$$\sum M_B = -40(1.5)-50(2)-(50-T)(2)+4(V)=0$$

Any of them correct?
 

Attachments

  • pictures for CIV.JPG
    pictures for CIV.JPG
    20 KB · Views: 109
Mathematics news on Phys.org
Rido12 said:
In the structure shown, a cable is attached to the 50 kN weight and to the beam A-D at point B. If the horizontal uniform beam weighs 8 kN/m, determine the following:
(a) The horizontal and vertical component of the force that the pin at D exerts on the beam A-D.
(b) The force in the cable.
...

https://www.physicsforums.com/attachments/3383

I just want to focus on getting the vertical component right...and I have developed two methods, each of which return a different answer.
1) Taking moments about A (i know doing it about B is simpler):
$$\sum M= T_y -40(2.5)-(T-50)(3)+D_y(5)$$
$$\sum F_y = T_y-40-50+D_y =0$$
$$=T \sin36.9-90+D_y$$

Now solving the two equations, I get $D_y = 61.98 \text{kN}$2) Starting with this line...
$$\sum M_B = -40(1.5)-50(2)-(50-T)(2)+4(V)=0$$

Any of them correct?

Doesn't look like it. (Doh)

In the first method, you have a force of $(T-50)$ that would act in a clockwise fashion (negative).
However, $T$ is upward while $50\text{ kN}$ is downward.
So the force should be $(50-T)$ instead.

Furthermore, in the sum of the vertical forces I seem to be missing a $T$ term. :eek:

In the second method I'm assuming that with $V$ you mean the same thing as $D_y$.
Anyway, here you do have the direction of the $(50-T)$ correct!
But... where is the $-50(2)$ term coming from? (Wondering)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top