MHB Is my vertical component calculation correct?

AI Thread Summary
The discussion revolves around calculating the vertical component of the force exerted by a pin on a beam connected to a cable and a weight. Two methods were proposed, but each yielded different results for the vertical force at point D. The first method incorrectly accounted for the direction of the forces, particularly the tension in the cable. The second method raised questions about the origin of certain terms in the equations used. Overall, there is confusion regarding the correct approach to determine the vertical component accurately.
Dethrone
Messages
716
Reaction score
0
In the structure shown, a cable is attached to the 50 kN weight and to the beam A-D at point B. If the horizontal uniform beam weighs 8 kN/m, determine the following:
(a) The horizontal and vertical component of the force that the pin at D exerts on the beam A-D.
(b) The force in the cable.
...

View attachment 3383

I just want to focus on getting the vertical component right...and I have developed two methods, each of which return a different answer.
1) Taking moments about A (i know doing it about B is simpler):
$$\sum M= T_y -40(2.5)-(T-50)(3)+D_y(5)$$
$$\sum F_y = T_y-40-50+D_y =0$$
$$=T \sin36.9-90+D_y$$

Now solving the two equations, I get $D_y = 61.98 \text{kN}$2) Starting with this line...
$$\sum M_B = -40(1.5)-50(2)-(50-T)(2)+4(V)=0$$

Any of them correct?
 

Attachments

  • pictures for CIV.JPG
    pictures for CIV.JPG
    20 KB · Views: 112
Mathematics news on Phys.org
Rido12 said:
In the structure shown, a cable is attached to the 50 kN weight and to the beam A-D at point B. If the horizontal uniform beam weighs 8 kN/m, determine the following:
(a) The horizontal and vertical component of the force that the pin at D exerts on the beam A-D.
(b) The force in the cable.
...

https://www.physicsforums.com/attachments/3383

I just want to focus on getting the vertical component right...and I have developed two methods, each of which return a different answer.
1) Taking moments about A (i know doing it about B is simpler):
$$\sum M= T_y -40(2.5)-(T-50)(3)+D_y(5)$$
$$\sum F_y = T_y-40-50+D_y =0$$
$$=T \sin36.9-90+D_y$$

Now solving the two equations, I get $D_y = 61.98 \text{kN}$2) Starting with this line...
$$\sum M_B = -40(1.5)-50(2)-(50-T)(2)+4(V)=0$$

Any of them correct?

Doesn't look like it. (Doh)

In the first method, you have a force of $(T-50)$ that would act in a clockwise fashion (negative).
However, $T$ is upward while $50\text{ kN}$ is downward.
So the force should be $(50-T)$ instead.

Furthermore, in the sum of the vertical forces I seem to be missing a $T$ term. :eek:

In the second method I'm assuming that with $V$ you mean the same thing as $D_y$.
Anyway, here you do have the direction of the $(50-T)$ correct!
But... where is the $-50(2)$ term coming from? (Wondering)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top