MHB Is R a Principal Ideal Domain (P.I.D) Given These Properties?

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The discussion centers on proving that a Noetherian U.F.D. integral domain R, with a specific property regarding elements having no common prime divisor, is a Principal Ideal Domain (P.I.D.). The participants explore the implications of the existence of a greatest common divisor (gcd) for any two elements a and b in R, leading to the conclusion that the ideal generated by a and b can be expressed as (d), where d is the gcd. They confirm that elements of the ideal (a, b) can be represented as multiples of d, establishing that (a, b) = (d). This reasoning supports the assertion that every ideal in R can be generated by a single element, thus demonstrating that R is indeed a P.I.D. The discussion effectively connects the properties of R to the definition of a P.I.D. through the use of gcd and ideal generation.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be an integral domain and a Noetherian U.F.D. with the following property:

for each couple $a,b\in R$ that are not both $0$, and that have no common prime divisor, there are elements $u,v\in R$ such that $au+bv=1$.

I want to show that $R$ is a P.I.D..
Since $R$ is Noetherian, we have that every ideal is finitely generated. Then every ideal is a finite product of irreducible elements of $R$.

How could we use the above property of $R$ to conclude that $R$ is a P.I.D. ? (Wondering)
 
Physics news on Phys.org
Suppose we have $I = (a,b)$.

Suppose $d = \gcd(a,b)$ (why does $d$ exist?).

Then $(a,b) = (ds,dt)$ where $\gcd(s,t) = 1$.

What can you say about $(d)$?
 
Deveno said:
Suppose we have $I = (a,b)$.

Suppose $d = \gcd(a,b)$ (why does $d$ exist?).

Then $(a,b) = (ds,dt)$ where $\gcd(s,t) = 1$.

What can you say about $(d)$?

Since $\gcd(s,t) = 1$ from the property of $R$ we have that $\exists u,v\in R$ such that $su+tv=1$.

Then $dsu+dtv=d \Rightarrow au+bv=d$.

We have that the elements of the ideal $(a,b)$ are of the form $ax+by$ where $x,y\in R$, right? (Wondering)

That means that elements of the ideal $(a,b)$ are the multiples of $d$, or not? ( $axk+byk=dk$ )
Therefore, $(a,b)=(d)$, right? (Wondering)
 
mathmari said:
Since $\gcd(s,t) = 1$ from the property of $R$ we have that $\exists u,v\in R$ such that $su+tv=1$.

Then $dsu+dtv=d \Rightarrow au+bv=d$.

This shows that $(d) \subseteq (a,b)$

We have that the elements of the ideal $(a,b)$ are of the form $ax+by$ where $x,y\in R$, right? (Wondering)

Yes.

That means that elements of the ideal $(a,b)$ are the multiples of $d$, or not? ( $axk+byk=dk$ )

Not quite right-your conclusion is true though.

We have $a = ds$ and $b = dt$, so $ax + by = (ds)x + (dt)y = d(sx + ty)$, so $(a,b) \subseteq (d)$


Therefore, $(a,b)=(d)$, right? (Wondering)

Now...can you use this to show $R$ is a PID?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
906
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K