MHB Is R a Principal Ideal Domain (P.I.D) Given These Properties?

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The discussion centers on proving that a Noetherian U.F.D. integral domain R, with a specific property regarding elements having no common prime divisor, is a Principal Ideal Domain (P.I.D.). The participants explore the implications of the existence of a greatest common divisor (gcd) for any two elements a and b in R, leading to the conclusion that the ideal generated by a and b can be expressed as (d), where d is the gcd. They confirm that elements of the ideal (a, b) can be represented as multiples of d, establishing that (a, b) = (d). This reasoning supports the assertion that every ideal in R can be generated by a single element, thus demonstrating that R is indeed a P.I.D. The discussion effectively connects the properties of R to the definition of a P.I.D. through the use of gcd and ideal generation.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be an integral domain and a Noetherian U.F.D. with the following property:

for each couple $a,b\in R$ that are not both $0$, and that have no common prime divisor, there are elements $u,v\in R$ such that $au+bv=1$.

I want to show that $R$ is a P.I.D..
Since $R$ is Noetherian, we have that every ideal is finitely generated. Then every ideal is a finite product of irreducible elements of $R$.

How could we use the above property of $R$ to conclude that $R$ is a P.I.D. ? (Wondering)
 
Physics news on Phys.org
Suppose we have $I = (a,b)$.

Suppose $d = \gcd(a,b)$ (why does $d$ exist?).

Then $(a,b) = (ds,dt)$ where $\gcd(s,t) = 1$.

What can you say about $(d)$?
 
Deveno said:
Suppose we have $I = (a,b)$.

Suppose $d = \gcd(a,b)$ (why does $d$ exist?).

Then $(a,b) = (ds,dt)$ where $\gcd(s,t) = 1$.

What can you say about $(d)$?

Since $\gcd(s,t) = 1$ from the property of $R$ we have that $\exists u,v\in R$ such that $su+tv=1$.

Then $dsu+dtv=d \Rightarrow au+bv=d$.

We have that the elements of the ideal $(a,b)$ are of the form $ax+by$ where $x,y\in R$, right? (Wondering)

That means that elements of the ideal $(a,b)$ are the multiples of $d$, or not? ( $axk+byk=dk$ )
Therefore, $(a,b)=(d)$, right? (Wondering)
 
mathmari said:
Since $\gcd(s,t) = 1$ from the property of $R$ we have that $\exists u,v\in R$ such that $su+tv=1$.

Then $dsu+dtv=d \Rightarrow au+bv=d$.

This shows that $(d) \subseteq (a,b)$

We have that the elements of the ideal $(a,b)$ are of the form $ax+by$ where $x,y\in R$, right? (Wondering)

Yes.

That means that elements of the ideal $(a,b)$ are the multiples of $d$, or not? ( $axk+byk=dk$ )

Not quite right-your conclusion is true though.

We have $a = ds$ and $b = dt$, so $ax + by = (ds)x + (dt)y = d(sx + ty)$, so $(a,b) \subseteq (d)$


Therefore, $(a,b)=(d)$, right? (Wondering)

Now...can you use this to show $R$ is a PID?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
847
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K