kurt101
- 285
- 35
bhobba said:There is no spooky action at a distance in QM.
To really understand this, its one of the myths of QM promulgated in popularizations, you need to go back to Bell's original paper:
https://hal.archives-ouvertes.fr/jpa-00220688/document
I read the paper written by Bell. https://hal.archives-ouvertes.fr/jpa-00220688/document
First off, I am very familiar with and accept the conclusions of Bell's paper which I would characterize as there is a spooky correlation at a distance. A long time ago, when I was first learning about QM I was not convinced, but I am now and have been for a while now. So no need to convince me on this point!
In this paper Bell writes "Could we not be a little more clever, and devise a model which reproduces the quantum formulae completely ? No. It cannot be done, so long as action at a distance is excluded." So here Bell leaves open the possibility of action at a distance.
Near the end of his paper Bell addresses this issue specifically: "Thirdly, it may be that we have to admit that causal influences - do go faster than light. The role of Lorentz invariance in the completed theory would then be very problematic." And he concludes this paragraph with "The exact elucidation of concepts like 'message' and 'we', would be a formidable challenge." So from these remarks I got that action at a distance is "problematic" and "formidable" and there is nothing from Bell refuting the idea of action at a distance.
At the beginning of the paper, Bell discusses the behavior of the Stern-Gerlach device which for spin 1/2 particles gives you 2 clumps rather than the naïve classical expectation of a continuous distribution. He goes on to say:
"Phenomena of this kind /3/ made physicists despair of finding any consistent space-time picture of what goes on the atomic and subatomic scale. Making a virtue of necessity, and influenced by positivistic and instrumentalist philosophies /4/, many came to hold not only that it is difficult to find a coherent picture but that it is wrong to look for one - if not actually immoral then certainly unprofessional."
I found the discussion of the Stern-Gerlach device interesting and most challenging to the idea that QM could be deterministically simulated. The paper suggested some naïve strawmen models, but there was nothing in it refuting the idea. That being said, I think simulating the Stern-Gerlach and being able to reproduce the results of QM using an algorithm similar to the entanglement collapse algorithm used for EPR with photons is a good challenge. By the entanglement collapse algorithm I am referring to the one that myself, Boing3000, and Mentz114 have posted on this forum where the result of the first interaction resolves to the particle that has not yet interacted.
I also think that QM Born rule and the simulated entanglement collapse algorithm have to be saying the same thing for the algorithm to be meaningful. I am still working on understanding how the Born rule relates to probability. Hopefully the next paper on probability theory will help with this. So I will go on to read https://arxiv.org/abs/1402.6562 next.