I Is tensor product the same as dyadic product of two vectors?

xopek
Messages
24
Reaction score
0
Is tensor product the same as dyadic product of two vectors? And dyadic multiplication is just matrix multiplication? You have a column vector on the left and a row vector on the right and you just multiply them and that's it? We just create a matrix out of two vectors so we encode two different things, such a stress tensor in different directions? Sounds too simple to be true. I tried reading about the tensor product space and it was way too abstract and every source gives a different explanation.
 
Physics news on Phys.org
xopek said:
Is tensor product the same as dyadic product of two vectors?
The dyadic product is a tensor product, but a tensor product can have more than two components and is in general also the sum of e.g. dyadic products.

xopek said:
And dyadic multiplication is just matrix multiplication?
Yes. Column times row.
xopek said:
You have a column vector on the left and a row vector on the right and you just multiply them and that's it? We just create a matrix out of two vectors so we encode two different things, such a stress tensor in different directions? Sounds too simple to be true. I tried reading about the tensor product space and it was way too abstract and every source gives a different explanation.
Try this one:
https://www.physicsforums.com/insights/what-is-a-tensor/

What is a derivative? There are plenty of ways to consider it: slope, linear function, limit, etc. And like
$$
D_2(x^2)=\left.\dfrac{d}{dx}\right|_{x=2} (x^2)=4
$$
can be viewed as the linear function ##x\longmapsto 4\cdot x## can tensors be considered as multilinear functions. This is especially in physics the case. So although they are simply a number scheme, they are simultaneously functions, too.
 
At the vector space level, the tensor product of two vector spaces over the same field is a new vector space
over which all bilinear maps into a fixed 3rd vector space becomes linear. It's one of those category-theoretical constructions. But maybe you were looking for more Physical intuition?
 
WWGD said:
a new vector space over which all bilinear maps into a fixed 3rd vector space becomes linear.
So the tensor product creates a mathematical object called a tensor? And that object is also a bilinear map? And in case of two components it is also a 2-dimensional matrix? I know that typically a 2-dimensional matrix is a linear transformation map in a 2D vector space such as a rotation map that takes a vector and spits out another vector. But in our case this matrix (our dyadic tensor) is a bilinear map which takes two input vectors and spits out a scalar. I know that a bilinear map can become linear with one of the components held constant, i.e. what happens in a dual space V* where a covariant vector v* takes a contravariant vector v from V and produces a scalar. Is this what happens in case of the tensor product space as well?

WWGD said:
But maybe you were looking for more Physical intuition?
Yes, that too. I was thinking of something simple such as rank-2 dyadic tensor, say in two dimensions, when two 2D vectors are "mixed" together into a 2x2 matrix aka dyadic tensor which then encodes two pieces of information coming from the two vectors, say, an angle and a direction. My main confusion is the distinction between some other object acting on a tensor, and a tensor acting on other objects. And pretty much everything about tensors.
 
Yes, the tensor product $$ V \otimes W$$ of two vector spaces $$V, W $$ over the same field is a vector space whose dimension is the product of the dimensions of $$V \and W $$, so that every bilinear map $$ B: V \times W \rightarrow Z$$ factors into a linear map $$L$$ from $$ V \otimes W \rightarrow Z $$
So that the diagram commutes. Sorry, I don't know how to implement diagrams here in PF.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top