It shows that every quantum theory that requires collapse can be converted into one that evolves purely unitarily and makes the same predictions. Here is the recipe:
We start with a Hilbert space ##\mathcal H##, a unitary time evolution ##U(t)## and a set of (possibly non-commuting) observables ##(X_i)_{i=1}^n##. We define the Hilbert space ##\hat{\mathcal H} = \mathcal H\otimes\underbrace{\mathcal H \otimes \cdots \mathcal H}_{n \,\text{times}}##. We define the time evolution ##\hat U(t) \psi\otimes\phi_1\otimes\cdots\otimes\phi_n = (U(t)\psi)\otimes\phi_1\otimes\cdots\otimes\phi_n## and the pointer observables ##\hat X_i \psi\otimes\phi_1\otimes\cdots\otimes\phi_n = \psi\otimes\phi_1\otimes\cdots\otimes (X_i\phi_i)\otimes\cdots\otimes\phi_n##. First, we note that ##\left[\hat X_i,\hat X_j\right]=0##, so we can apply the previous result. Now, for every observable ##X_i## with ##X_i\xi_{i k} = \lambda_{i k}\xi_{i k}## (I assume discrete spectrum here, so I don't have to dive into direct integrals), we introduce the unitary von Neumann measurements ##U_i \left(\sum_k c_k\xi_{i k}\right)\otimes\phi_1\otimes\cdots\otimes\phi_n = \sum_k c_k \xi_{i k} \otimes\phi_1\otimes\cdots\otimes \xi_{i k} \otimes\cdots\otimes\phi_n##. Whenever a measurement of an observable ##X_i## is performed, we apply the corresponding unitary operator ##U_i## to the state. Thus, all time evolutions are given by unitary operators (either ##\hat U(t)## or ##U_i##) and thus the whole system evolves unitarily. Moreover, all predictions of QM with collapse, including joint and conditional probabilities, are reproduced exactly, without ever having to use the collapse postulate.
Of course, this is the least realistic model of measurement devices possible, but one can always put more effort in better models.