Undergrad Is the current density operator derived from fundamental considerations?

Click For Summary
The discussion centers on the derivation of the current operator, expressed as -δH/δA, and whether it stems from fundamental principles or is merely a definitional construct. The reference to "Many-body quantum theory in condensed matter physics" illustrates how the vector potential A is integrated into the Lagrangian, leading to the Lorentz force through the Euler-Lagrange equations. The relationship between momentum and the vector potential is established via the Legendre transform, resulting in a Hamiltonian that incorporates A. The inquiry seeks clarification on the foundational basis of this relationship, particularly regarding the infinitesimal variation of A and its implications for the Hamiltonian. Overall, the discussion explores the theoretical underpinnings of the current operator in quantum mechanics.
Paul159
Messages
15
Reaction score
4
Hello,

I found this article. In equation (1) the authors wrote that the current operator is given by : ## - \frac{\delta H}{\delta A} ##.
I just would like to know if this relation is a just definition or if it can be derived from more fundamentals considerations ?

Thanks !
 
Physics news on Phys.org
Quoting from "Many-body quantum theory in condensed matter physics" by Bruus and Flensberg:
"In analytical mechanics ##\vec A## enters through the Lagrangian: ##L=\frac{1}{2}mv^2-V+q \vec v \cdot \vec A## since by the Euler-Lagrange equations yields the Lorentz force. But ##\vec p=\frac{\partial L}{\partial \vec v}=m\vec v + q\vec A##, and via a Legendre transform we get ##H(r,p)=\vec p \cdot \vec v - L(r,v)=\frac{1}{2}mv^2+V=\frac{1}{2m}(\vec p - q\vec A)^2 +V##. Considering infinitesimal variation ##\delta \vec A## we get ##\delta H = H(\vec A +\delta \vec A)-H(\vec A)=-q\vec v \cdot \delta \vec A##".
 
  • Like
Likes Paul159 and dRic2
Ok I see thanks !
 
I am currently reading Kittel's Introduction to Solid State Physics and am confused by the terminology regarding phonons. On page 99 (8th ed.), regarding Eq. 27, Kittel writes: "The energy of an elastic mode of angular frequency ## \omega ## is ## \epsilon = (n + 1/2)\hbar\omega ## when the mode is excited to quantum number ## n ##; that is, when the mode is occupied by ## n ## phonons. This definition implies that: The mode (the harmonic oscillator) is the entity that possesses the wave...

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K