Is the function differentiable everywhere?

Click For Summary
The function f(x, y) is defined as 0 at the origin and as xy²/(x²+y⁴)^(1/2) elsewhere. The partial derivatives exist everywhere and are zero at the origin, but they are not continuous at that point. To determine differentiability at the origin, the limit must be evaluated, and it has been shown that it does not approach zero along certain paths, such as x = y², leading to a non-zero limit. This indicates that the function is not differentiable at the origin, contradicting the assumption of a horizontal tangent plane there.
Essnov
Messages
19
Reaction score
0
I am hoping someone can help me with the following problem:

Define f by:

f(x, y) = 0 \ if \ (x, y) = (0,0) \ and \ f(x, y) = \frac{xy^{2}}{(x^{2}+y^{4})^{1/2}} \ otherwise

The problem is to determine (and prove) whether the function is differentiable everywhere.

First of all, the partials exist everywhere (they are 0 at the origin in particular) but are not continuous at the origin. Since they are continuous everywhere else, the function is certainly differentiable everywhere, except possibly at the origin.

If the function has a derivative at the origin then it is the zero vector since I have computed the partials to be 0 at the origin. Hence to determine differentiability at the origin I must check whether the following holds:

\lim_{(x, y)\rightarrow(0,0)} \frac{f(x, y) - f(0, 0) - <0,0> \cdot <x, y>}{||(x, y)||} = \lim_{(x, y)\rightarrow(0,0)} \frac{xy^{2}}{(x^{2}+y^{4})^{1/2}(x^{2}+y^{2})^{1/2}} = 0

I'm asked to show whether this holds using the definition, i.e.: \forall \epsilon > 0 \ \exists\ \delta > 0 \ s.t. \ if \ ||(x, y)|| < \delta \ then \ \frac{|x|y^{2}}{(x^{2}+y^{4})^{1/2}} < \epsilon ||(x, y)||

This is the part where I am having some issues. In particular I tried choosing paths like x = y or x = y^2 to try and show that the inequality cannot hold for certain values of epsilon but this was not very helpful.

Any tips/hints are greatly appreciated.
 
Last edited:
Physics news on Phys.org
Essnov said:
I am hoping someone can help me with the following problem:

Define f by:

f(x, y) = 0 \ if \ (x, y) = (0,0) \ and \ f(x, y) = \frac{xy^{2}}{(x^{2}+y^{4})^{1/2}} \ otherwise

The problem is to determine (and prove) whether the function is differentiable everywhere.

First of all, the partials exist everywhere (they are 0 at the origin in particular) but are not continuous at the origin. Since they are continuous everywhere else, the function is certainly differentiable everywhere, except possibly at the origin.

If the function has a derivative at the origin then it is the zero vector since I have computed the partials to be 0 at the origin. Hence to determine differentiability at the origin I must check whether the following holds:

\lim_{(x, y)\rightarrow(0,0)} \frac{f(x, y) - f(0, 0) - <0,0> \cdot <x, y>}{||(x, y)||} = \lim_{(x, y)\rightarrow(0,0)} \frac{xy^{2}}{(x^{2}+y^{4})^{1/2}(x^{2}+y^{2})^{1/2}} = 0

I'm asked to show whether this holds using the definition, i.e.: \forall \epsilon > 0 \ \exists\ \delta > 0 \ s.t. \ if \ ||(x, y)|| < \delta \ then \ \frac{|x|y^{2}}{(x^{2}+y^{4})^{1/2}} < \epsilon ||(x, y)||

This is the part where I am having some issues. In particular I tried choosing paths like x = y or x = y^2 to try and show that the inequality cannot hold for certain values of epsilon but this was not very helpful.

Any tips/hints are greatly appreciated.

I think you are supposing here that in the origin the tangent plane is the horizontal plane.
But:
\lim_{(x, y) \to (0,0)} \frac{xy^{2}}{(x^{2}+y^{4})^{1/2}(x^{2}+y^{2})^{1/2}} = \lim_{(x, y) \to (0,0)} \frac{xy^{2}}{(x^{4}+y^{6}+x^2y^2+x^2y^4)^{1/2}}

If you approach the origin by x=y^2
you have
\lim_{(x) \to (0)} \frac{x^{2}}{(x^{2}(2+2x^2)^{1/2}} = \frac{1}{\sqrt2}
so there cannot be any horizontal plane there.
I'm not sure 100%, I hope this helps.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K