Is the Harmonic Series Diverging with Ars Conjectandi?

  • Thread starter Thread starter Shackleford
  • Start date Start date
  • Tags Tags
    Series
Click For Summary

Homework Help Overview

The discussion revolves around the harmonic series and its divergence, specifically in the context of finite sums and partial fraction decomposition. Participants are exploring the properties of the series and its terms, questioning the definitions and relationships between different series notations.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss the nature of the harmonic series and its divergence, with some attempting to clarify the relationship between finite sums and the series. There are suggestions to use partial fractions to simplify terms, and questions arise regarding the correctness of expressions and assumptions about the series.

Discussion Status

The discussion is active, with various interpretations being explored. Some participants have offered hints and suggestions for rewriting terms, while others express confusion over the notation and the implications of the series. There is no explicit consensus, but productive dialogue is ongoing regarding the connections between the series and their representations.

Contextual Notes

There is some confusion regarding the notation used for the series, with participants noting that the terms S and Sn are being used interchangeably, which may lead to misunderstandings. The problem involves finite sums, and assumptions about limits are being questioned.

Physics news on Phys.org
Hint: Expand \frac 1 {n(n+1)} into partial fractions.
 
1. But the difference between two divergent series is not necessarily divergent or infinite.

2 Actually write stuff out - write out Sn - Sn+1 as series and what does it equal? and write out the term typical term 1/n(n + 1) - how else would you naturally express that?

This should suggest something to you.
 
Well, I realized that Sn - Sn+1 = S the first series. If I multiply that by 2 I get the sum identity inverse.

So, he's wanting an expression for the finite sum? I suspected it was finite, but I wasn't sure.

Terms would cancel in that difference. The first series is a telescoping series.

It simplifies to 1 - (1/n+1) for some n.
 
Last edited:
Shackleford said:
Well, I realized that Sn - Sn+1 = S the first series. If I multiply that by 2 I get the sum identity inverse.

So, he's wanting an expression for the finite sum? I suspected it was finite, but I wasn't sure.
Both of the sums shown in the linked-to image are finite sums.
Shackleford said:
Terms would cancel in that difference. The first series is a telescoping series.

It simplifies to 1 - (1/n+1) for some n.

You don't have the parentheses in the right places. This should be 1 - 1/(n+1).
 
\frac{1}{n(n + 1)} = ?

Edit (Actually that is what Kurz is saying).

Sooner or later you'll kick yourself.
 
Last edited:
Mark44 said:
Both of the sums shown in the linked-to image are finite sums.


You don't have the parentheses in the right places. This should be 1 - 1/(n+1).

Yeah, I have 1 - 1/(n+1) on my paper. If you take the limit as n goes to infinity it tends to 1. Since n does not go to infinity, then you have the expression for some finite n.
 
Shackleford said:
Yeah, I have 1 - 1/(n+1) on my paper. If you take the limit as n goes to infinity it tends to 1. Since n does not go to infinity, then you have the expression for some finite n.
Based on the photo you uploaded, the question has nothing to do with limits. It could be that this is asked for in the problem itself, but it looks to me like what they're asking you to do is find Sn = 1 + 1/2 + 1/3 + ... + 1/n, which I say again, is a finite sum.
 
  • #10
Mark44 said:
Based on the photo you uploaded, the question has nothing to do with limits. It could be that this is asked for in the problem itself, but it looks to me like what they're asking you to do is find Sn = 1 + 1/2 + 1/3 + ... + 1/n, which I say again, is a finite sum.

Sn - Sn+1 = 1 - 1/(n+1).
 
  • #11
Shackleford said:
Sn - Sn+1 = 1 - 1/(n+1).

This is incorrect - the left side is negative and the right side is close to 1 (hence positive).
 
  • #12
Mark44 said:
This is incorrect - the left side is negative and the right side is close to 1 (hence positive).

Are you sure about that?

Sn - Sn+1 = (1 + 1/2 + 1/3 + ... + 1/n) - (1/2 + 1/3 + ... + 1/n + 1(n+1)) = 1 - 1/(n+1).
 
  • #13
LCKurtz said:
Hint: Expand \frac 1 {n(n+1)} into partial fractions.

If I write this in partial fractions I get

1 = A(n+1) + Bn

If I continue, I don't get a nice expression.
 
  • #14
Shackleford said:
Are you sure about that?
Yes.
Shackleford said:
Sn - Sn+1 = (1 + 1/2 + 1/3 + ... + 1/n) - (1/2 + 1/3 + ... + 1/n + 1(n+1)) = 1 - 1/(n+1).

The expression you have for Sn+1 is wrong because it is missing a term. Sn is a sum of n terms, while Sn+1 is a sum of n + 1 terms. Sn - Sn+1 < 0.
 
  • #15
Shackleford said:
If I write this in partial fractions I get

1 = A(n+1) + Bn

If I continue, I don't get a nice expression.
?

The equation above is an identity that must be true for all n. That means that the polynomial on the left has to be identically equal to the one on the right.

Grouping by powers of n gives
1 = (A + B)n + A

More suggestively, this is
0n + 1 = (A + B)n + A
 
  • #16
Mark44 said:
Yes.


The expression you have for Sn+1 is wrong because it is missing a term. Sn is a sum of n terms, while Sn+1 is a sum of n + 1 terms. Sn - Sn+1 < 0.

I'm interpreting it differently. Why is it not the following?

sum of (1/k) from k = 1 to k = n

sum of (1/k+1) from k = 1 to k = n
 
  • #17
Mark44 said:
?

The equation above is an identity that must be true for all n. That means that the polynomial on the left has to be identically equal to the one on the right.

Grouping by powers of n gives
1 = (A + B)n + A

More suggestively, this is
0n + 1 = (A + B)n + A

I haven't worked partial fractions in a while. I reworked and got 1 = A and -1 = B.

According to what you're saying,

Sn - Sn+1 = (1 + 1/2 + 1/3 + ... + 1/n) - (1 + 1/2 + 1/3 + ... + 1/n + 1(n+1)) = -1/(n+1).
 
Last edited:
  • #18
Yes, that's better. Now, do you understand how all this ties into the real problem?
Namely, finding the sum
\frac{1}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{3}{3 \cdot 4} + ... + \frac{n}{n \cdot (n + 1)}

The whole business of partial fraction decomposition is intended to help you rewrite the individual terms in the sum above.
 
  • #19
Mark44 said:
Yes, that's better. Now, do you understand how all this ties into the real problem?
Namely, finding the sum
\frac{1}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{3}{3 \cdot 4} + ... + \frac{n}{n \cdot (n + 1)}

The whole business of partial fraction decomposition is intended to help you rewrite the individual terms in the sum above.

Maybe.

S = 2Sn - Sn+1
 
  • #20
Mark44 said:
Yes, that's better. Now, do you understand how all this ties into the real problem?
Namely, finding the sum
\frac{1}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{3}{3 \cdot 4} + ... + \frac{n}{n \cdot (n + 1)}

The whole business of partial fraction decomposition is intended to help you rewrite the individual terms in the sum above.

Shackleford said:
Maybe.

S = 2Sn - Sn+1
How are you getting this?

I worked this problem using the suggested hint and have something completely different for S.

One thing that bothers about the problem statement is their confusing use of S and Sn to represent unrelated things. For example, in the problem it is given that

S = \frac{1}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{3}{3 \cdot 4} + ... + \frac{n}{n \cdot (n + 1)}

Later on, they have Sn = 1 + 1/2 + 1/3 + ... + 1/n. For this latter sum, they should have used a different letter altogether, maybe Hn.
 
  • #21
Mark44 said:
How are you getting this?

I worked this problem using the suggested hint and have something completely different for S.

One thing that bothers about the problem statement is their confusing use of S and Sn to represent unrelated things. For example, in the problem it is given that

S = \frac{1}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{3}{3 \cdot 4} + ... + \frac{n}{n \cdot (n + 1)}

Later on, they have Sn = 1 + 1/2 + 1/3 + ... + 1/n. For this latter sum, they should have used a different letter altogether, maybe Hn.

Well, maybe that's my fault. I'm calling that S. The problem just gives the series. It doesn't call it S or anything.

Here's how I got that expression up there. You should be able enlarge it.

http://i111.photobucket.com/albums/n149/camarolt4z28/IMG_20111105_142452.jpg
 
Last edited by a moderator:
  • #22
Then lets' not give names to 1 + 1/2 + ... + 1/n and 1 + 1/2 + ... + 1/n + 1/(n+1). And let's reserve Sn to mean the first n terms of the original sum. IOW,

S_n = \frac{1}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{3}{3 \cdot 4} + ... + \frac{n}{n \cdot (n + 1)}

As I see it, you aren't making the connection between the partial fractions business and the terms in this series. The partial fractions decomposition you did says that 1/(n(n+1)) = 1/n - 1/(n + 1).

Apply this formula to each term in the sum above to get a formula for Sn
 
  • #23
Mark44 said:
Then lets' not give names to 1 + 1/2 + ... + 1/n and 1 + 1/2 + ... + 1/n + 1/(n+1). And let's reserve Sn to mean the first n terms of the original sum. IOW,

S_n = \frac{1}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{3}{3 \cdot 4} + ... + \frac{n}{n \cdot (n + 1)}

As I see it, you aren't making the connection between the partial fractions business and the terms in this series. The partial fractions decomposition you did says that 1/(n(n+1)) = 1/n - 1/(n + 1).

Apply this formula to each term in the sum above to get a formula for Sn

Your Sn is different than their first series. You can express your Sn as sum of n[(1/n) - 1/(n+1)] from 1 to n.
 
  • #24
This thread has gotten so bollixed up I can't tell whether Shackleford has solved the problem or not. The original sum was

\sum_{k=1}^n \frac 1 {k(k+1)} = \sum_{k=1}^n \left(\frac 1 {k}-\frac 1 {1+k}\right)

Just write that out and cancel what you can and it's done.
 
  • #25
LCKurtz said:
This thread has gotten so bollixed up I can't tell whether Shackleford has solved the problem or not. The original sum was

\sum_{k=1}^n \frac 1 {k(k+1)} = \sum_{k=1}^n \left(\frac 1 {k}-\frac 1 {1+k}\right)

Just write that out and cancel what you can and it's done.

That's the sum I interpreted initially.

You get 1 - 1/(n+1), right?

And using partial fractions you show that the above equals the desired series.
 
Last edited:
  • #26
Shackleford said:
That's the sum I interpreted initially.

You get 1 - 1/(n+1), right?

And using partial fractions you show that the above equals the desired series.

Yes. Partial fractions is how you express the single fraction as the difference of those two fractions.
 
  • #27
so, is Sn-Sn+1 supposed to equal 1/n - 1/(n+1)? So, that you then get Sn-Sn+1 = to 1/(n(n+1))?
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K