Is the Inner Product in Quaternionic Vector Spaces Truly Hyperhermitian?

Click For Summary
SUMMARY

The discussion centers on the hyperhermitian condition in quaternionic vector spaces, specifically examining whether the defined inner product $$\langle p,q \rangle := G(p,q)+i\Omega^{I}(p,q)+j\Omega^{J}(p,q)+k\Omega^{K}(p,q)$$ satisfies this condition. Participants clarify that a quaternionic structure consists of three linear operators ##I, J, K## with specific multiplication rules. The hyperhermitian condition is defined as $$\langle I u,I v \rangle=\langle J u,J v \rangle=\langle K u,K v \rangle = \langle u,v \rangle$$ and is shown not to be fulfilled by the proposed inner product. The conversation highlights the complexities of establishing metric compatibility in hyperkahler manifolds.

PREREQUISITES
  • Understanding of quaternionic structures and their properties.
  • Familiarity with Riemannian metrics and hyperkahler manifolds.
  • Knowledge of Hermitian conditions in complex vector spaces.
  • Proficiency in mathematical notation and manipulation of inner products.
NEXT STEPS
  • Study the properties of hyperkahler manifolds and their applications.
  • Learn about quaternionic structures and their implications in geometry.
  • Explore the mathematical foundations of Riemannian metrics.
  • Investigate the relationship between Hermitian and hyperhermitian conditions in vector spaces.
USEFUL FOR

Mathematicians, physicists, and researchers in geometry and algebra, particularly those focusing on quaternionic analysis and hyperkahler geometry.

Leditto
Messages
3
Reaction score
0
Let ##V## be a quaternionic vector space with quaternionic structure ##\{I,J,K\}##. One can define a Riemannian metric ##G## and hyperkahler structure ##\{\Omega^{I},\Omega^{J}, \Omega^{K}\}##. Do this inner product
$$\langle p,q \rangle := G(p,q)+i\Omega^{I}(p,q)+j\Omega^{J}(p,q)+k\Omega^{K}(p,q)$$
really satisfy hyperhermitian condition?
 
Physics news on Phys.org
Hey Leditto.

Could you please (for those of us like myself unfamiliar with the field and terminology) give a description of the condition?

Also - what is a quaternionic structure? I know what a quaternion is - is it just a tensor product of three quaternions?
 
chiro said:
Hey Leditto.

Could you please (for those of us like myself unfamiliar with the field and terminology) give a description of the condition?

Also - what is a quaternionic structure? I know what a quaternion is - is it just a tensor product of three quaternions?

On a vector space, a quaternionic structure is a set of three linear operators ##I,J,K## such that

$$I^2 = J^2 = K^2 = IJK = -\mathrm{id}, \quad IJ = K, \quad JK = I, \quad KI = J.$$
However, I've not heard the word "hyperhermitian" before.
 
Ben Niehoff said:
On a vector space, a quaternionic structure is a set of three linear operators ##I,J,K## such that

$$I^2 = J^2 = K^2 = IJK = -\mathrm{id}, \quad IJ = K, \quad JK = I, \quad KI = J.$$
However, I've not heard the word "hyperhermitian" before.
Thanks for your response, Niehoff.

In complex case, Hermitian condition is described by $$\langle I u,I v \rangle=\langle u,v \rangle.$$ Quaternionic analogue of that condition is called hyperhermitian condition and defined by $$\langle I u,I v \rangle=\langle J u,J v \rangle=\langle K u,K v \rangle = \langle u,v \rangle.$$ In addition, there are metric compatibilities condition that make vector space ##V## a hyperkahler manifold, $$G(Iu,v)=\Omega^{I}(u,v),\quad G(Ju,v)=\Omega^{J}(u,v),\quad G(Ku,v)=\Omega^{K}(u,v).$$ I've checked that hyperhermitian condition can't be fulfilled by defining $$\langle u,v \rangle=G(u,v)+i\,\Omega^{I}(u,v)+j\,\Omega^{J}(u,v)+k\,\Omega^{K}(u,v).$$ My calculation:
\begin{eqnarray*}
\langle I u,I v \rangle&=&G(Iu,Iv)+i\,\Omega^{I}(Iu,Iv)+j\,\Omega^{J}(Iu,Iv)+k\,\Omega^{K}(Iu,Iv)\\
&=&\Omega^{I}(u,Iv)+i\,G(I^2u,Iv)+j\,G(JIu,Iv)+k\,G(KIu,Iv)\\
&=&-\Omega^{I}(Iv,u)-i\,G(Iv,u)-j\,G(Ku,Iv)+k\,G(Ju,Iv)\\
&=&-G(I^2v,u)-i\,\Omega^{I}(v,u)-j\,\Omega^{K}(u,Iv)+k\,\Omega^{J}(u,Iv)\\
&=&G(u,v)+i\,\Omega^{I}(u,v)+j\,\Omega^{K}(Iv,u)-k\,\Omega^{J}(Iu,v)\\
&=&G(u,v)+i\,\Omega^{I}(u,v)+j\,G(KIv,u)-k\,G(JIv,u)\\
&=&G(u,v)+i\,\Omega^{I}(u,v)+j\,G(Jv,u)+k\,G(Kv,u)\\
&=&G(u,v)+i\,\Omega^{I}(u,v)-j\,\Omega^{J}(u,v)-k\,\Omega^{K}(u,v)\\
&\neq& \langle u, v \rangle
\end{eqnarray*}

Did I make something wrong in my elaboration? Can You spot it?
 
Last edited:
jim mcnamara said:
Hmm. maybe this might help:

http://arxiv.org/abs/math/0105206

Thanks Jim McNamara

I focus only on a quaternionic vector space case which can be seen as a (linear) hyperkahler manifold.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K