MHB Is the Integral \int^0_{-\infty} \frac{1}{3 - 4x} dx Divergent or Convergent?

Click For Summary
The integral $$\int^0_{-\infty} \frac{1}{3 - 4x} dx$$ is determined to be divergent. A u substitution transforms the integral into $$I=-\frac{1}{4}\int_{\infty}^3\frac{du}{u}$$. By applying the Fundamental Theorem of Calculus and properties of logarithms, it is shown that the limit approaches infinity. The divergence is confirmed through the evaluation of the improper integral. Therefore, the integral does not converge.
shamieh
Messages
538
Reaction score
0
Determine whether the integral is Divergent or Convergent$$\int^0_{-\infty} \frac{1}{3 - 4x} dx$$

I did a u substitution and got

$$\lim_{a\to\infty} -\frac{1}{4}\sqrt{3} + \frac{1}{4}\sqrt{3 - 4a}$$

So is because the $$-\infty$$ is under the square root is it going to be divergent?

I have $$\frac{1}{4}\sqrt{3 - 4\infty}$$
 
Last edited:
Physics news on Phys.org
shamieh said:
Determine whether the integral is Divergent or Convergent$$\int^0_{-\infty} \frac{1}{3 - 4x} dx$$

I did a u substitution and got

$$\lim_{a\to\infty} -\frac{1}{4}\sqrt{3} + \frac{1}{4}\sqrt{3 - 4a}$$

So is because the $$-\infty$$ is under the square root is it going to be divergent?

I have $$\frac{1}{4}\sqrt{3 - 4\infty}$$

Yes it is divergent.
 
It is divergent, but not for the reason you cite. I would first use the substitution:

$$u=3-4x\,\therefore\,du=-4\,dx$$ and our integral becomes:

$$I=-\frac{1}{4}\int_{\infty}^3\frac{du}{u}$$

Applying the rule $$-\int_b^a f(x)\,dx=\int_a^b f(x)\,dx$$ we obtain:

$$I=\frac{1}{4}\int_3^{\infty}\frac{du}{u}$$

Now, since this is an improper integral, we may write:

$$I=\frac{1}{4}\lim_{t\to\infty}\left[\int_3^t\frac{du}{u} \right]$$

Applying the FTOC, and a property of logarithms, we find:

$$I=\frac{1}{4}\lim_{t\to\infty}\left(\ln\left(\frac{t}{3} \right) \right)=\infty$$

Thus, the given integral is divergent.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K