- #1

Advent

- 30

- 0

## Homework Statement

Show that if [itex]z_1,z_2 \in \mathbb{C}[/itex] then [itex] |z_1+z_2| \leq |z_1| + |z_2|[/itex]

## Homework Equations

Above.

## The Attempt at a Solution

I tried by explicit calculation, with obvious notation for [itex]a,b[/itex] and [itex]c[/itex]: my frist claim is not that the triangle inequality holds, just that I don't know to put a ? above the [itex] \leq [/itex] symbol

[itex] \sqrt{a} \leq \sqrt{b} + \sqrt{c} \rightarrow 0 \leq \sqrt{b}

+ \sqrt{c} - \sqrt{a} \rightarrow 0 \leq \frac{b+c+2\sqrt{b}\sqrt{c} - a}{\sqrt{b}+\sqrt{c}+\sqrt{a}}[/itex]

Now if [itex]z_1 = x_1 + i y_1[/itex] and [itex]z_2=x_2+iy_2[/itex]

and using again the conjugate of the roots expresion, the last equation is something like

[itex] 0\leq f(x_1^2,x_2^2,y_1^2,y_2^2)[/itex]

and so is true. can this be correct or may I write explicitly all the terms?

Thanks.