I Is the model presented in the thread consistent with QM?

msumm21
Messages
247
Reaction score
28
TL;DR Summary
Seems that a model in a recent paper is not consistent with QM, this post includes an example case and questions how it can be consistent.
I started another thread on this but it went off into other topics. Hoping to focus on the math here, specifically whether or not the model presented in here is consistent with QM.

Let's measure the polarization at the same angle ##\alpha = \beta = \pi/3## (##\varphi_1=0, \varphi_2=\pi/2##). Now ##\delta_1=\pi/3,\delta_2=-\pi/6## and hence we have ##A=1## when ##\lambda <= 1/4## and ##B=-1## when ##\lambda <= 3/4## so that the A,B measurement results matching or not is not guaranteed, but varies with ##\lambda## which is inconsistent with QM.

Even more odd, changing the measurement direction to say ##\alpha=\beta=0## changes this conclusion as if there's a preferred direction in space. Or did I miss another exception?
 
Physics news on Phys.org
Moderator's note: This thread is a reopen of a previous thread. Please keep discussion in this thread exclusively focused on the consistency of the referenced mathematical model with QM.
 
Then I will repeat what I already said. I think the model is in fact nonlocal, so it has a potential to be consistent with QM. This is seen in the paragraph around Eq. (9). In particular, before (9) it says that it uses
$$\delta = \alpha +\pi/2 -\beta$$
It's not clear to me how exactly did he get this formula, but this formula is nonlocal. It is nonlocal because ##\alpha## is a property of one apparatus, while ##\beta## is a property of the other apparatus. Or if the author still claims that this formula has a local origin, it would help if he could better explain how did he obtain this formula, because to me it's not clear from the paper.
 
Last edited:
Demystifier said:
It's not clear to me how exactly did he get this formula, but this formula is nonlocal
Looks like he's considering the special case where the 2nd polarizer is set at ##\alpha + \pi/2## so that the equation gives the angle ##\delta## between ##\varphi_2## and the polarizer. I'm unconfident because this is reusing the same symbol in different ways: using ##\beta## here to be what was originally defined to be ##\varphi_2##.

This may be the source of another error, because it looks like equation 9 is later used as if ##\beta## is the polarizer setting again (whereas it was really ##\varphi_2## in this equation) and then using this equation for general polarizer settings whereas the equation was made for 90deg offset polarizers.
 
Last edited:
I understand that the world of interpretations of quantum mechanics is very complex, as experimental data hasn't completely falsified the main deterministic interpretations (such as Everett), vs non-deterministc ones, however, I read in online sources that Objective Collapse theories are being increasingly challenged. Does this mean that deterministic interpretations are more likely to be true? I always understood that the "collapse" or "measurement problem" was how we phrased the fact that...
I keep reading throughout this forum from many members that the general motivation for finding a deeper explanation within QM, specifically with regards to quantum entanglement, is due to an inability to grasp reality based off of classical intuitions. On the other hand, if QM was truly incomplete, and there was a deeper explanation that we haven't grasped yet that would explain why particles tend to be correlated to each other seemingly instantly despite vast separated distances, then that...
Back
Top