MHB Is the product of two radical expressions equal to six?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on proving that the product of two radical expressions equals six. There is initial confusion regarding the validity of this claim, with some users referencing Wolfram Alpha, which initially suggested the result was not six. Clarifications indicate that Wolfram Alpha treats inputs as complex numbers, while the problem requires real-valued roots. Users explore the expressions involved, noting that all terms except one are real, and discuss the potential for a closed-form proof without relying on computational tools. Ultimately, a user shares their completed proof, highlighting the complexity and beauty of the solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----
Prove that $\sqrt{4+\sqrt[3]{-26+6\sqrt{33}}+\sqrt[3]{-26-6\sqrt{33}}} \cdot \sqrt{8+2\sqrt[3]{19+3\sqrt{33}}+2\sqrt[3]{19-3\sqrt{33}}}=6$.

-----

 
  • Like
Likes I like Serena and topsquark
Physics news on Phys.org
Please clarify the problem. Wolfram Alpha says this is not 6. Thanks.
 
  • Like
Likes topsquark and malawi_glenn
bob012345 said:
Please clarify the problem. Wolfram Alpha says this is not 6. Thanks.
I've checked with W|A and it confirms that it is really 6.
Note that W|A treats every input as complex valued and takes the principle complex root by default, while in this case the real valued root is intended. That is, we need that $\sqrt[3]{-1}=-1$ instead of $\sqrt[3]{-1}=e^{i\pi/3}$.
 
  • Like
  • Informative
Likes Wrichik Basu, anemone, jim mcnamara and 2 others
I like Serena said:
I've checked with W|A and it confirms that it is really 6.
Note that W|A treats every input as complex valued and takes the principle complex root by default, while in this case the real valued root is intended. That is, we need that $\sqrt[3]{-1}=-1$ instead of $\sqrt[3]{-1}=e^{i\pi/3}$.
Thanks @I like Serena for the reply!
 
  • Like
Likes malawi_glenn and I like Serena
All the terms except
(-26-6\sqrt{33})^{1/3}
are real. I do not believe this equation holds. Should I interpret it with real coefficient -1
-(26+6\sqrt{33})^{1/3}
not with complex coefficients, i.e.
e^{\pi i/3},e^{-\pi i/3}

[EDIT] I got it in the post #4. Thanks.
 
Last edited:
anuttarasammyak said:
All the terms except
(-26-6\sqrt{33})^{1/3}
are real. I do not believe this equation holds.
1661231085340.png


1661231202185.png
 
This is just to know I got the question properly. LHS of the to be proved equation is
L:=2^{2/3}[2^{5/3}+(a-13)^{1/3}-(a+13)^{1/3}]^{1/2}[2^2+(19+a)^{1/3}+(19-a)^{1/3}]^{1/2}
where
a=3\sqrt{33}=17.23...
We may make use of the relations
(a+13)(a-13)=a^2-13^2=128=2^7
(a+19)(19-a)=19^2-a^2=64=2^6
For an example
[2^2+(19+a)^{1/3}+(19-a)^{1/3}]^{1/2}=(19+a)^{1/6}+(19-a)^{1/6}
 
Last edited:
  • Like
Likes Maarten Havinga
Is this problem workable without infinite series expansions?
 
So far after spending too many hours on this I wonder if there is a doable closed form proof. Of course one can evaluate this easily with computer tools like Wolfram Alpha but proof is not the same thing. The cube roots are all irrational numbers.

I did notice that

$$\sqrt[3]{-26+6\sqrt{33}}*\sqrt[3]{-26-6\sqrt{33}} = -8$$
and $$\sqrt[3]{19+3\sqrt{33}}*\sqrt[3]{19-3\sqrt{33}}=4$$
 
  • #10
I have tried everything. When will the proof be posted?
 
  • Like
Likes malawi_glenn
  • #11
I am so sorry for the late reply to this POTW's thread as I have been so extremely busy with work.

Here is the solution of other and I hope that readers will appreciate the beauty of the solution as much as I do.
Let $x=\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}$ so that we get $x^3-3\sqrt[3]{a^2-b}x-2a=0$.

Now, let $p=\sqrt[3]{-26+6\sqrt{33}}+\sqrt[3]{-26-6\sqrt{33}}$ and $q=\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}$. We then obtained $q^3-12q-38=0$ and $p^3+24p+52=0$.

Then what we are required to prove becomes $(4+p)(4+q)=18$.

It is then not hard to prove that both $q^3-12q-38=0$ and $p^3+24p+52=0$ have only one real roots.

That means $4+q$ and $4+p$ are the only real root of the polynomials $f(x)=(x-4)^3-12(x-4)-38=x^3-12x^2+36x-54$ and $g(x)=(x-4)^3+24(x-4)+52=x^3-12x^2+72x-108$.

So we have $f\left(\dfrac{18}{x}\right)=-\dfrac{54}{x^3}g(x)$, i.e. $f\left(\dfrac{18}{4+p}\right)=g(4+q)=0$.

Hence, $\dfrac{18}{4+p}=4+q$ and the proof follows.
 
  • Like
Likes bob012345, anuttarasammyak and Greg Bernhardt
  • #12
For confirmation of post#11
1661525170991.png
 
Last edited:
  • #13
Thanks. Before I look at it I want to report on the direction I took but I could not finish it.

$$\sqrt{4+\sqrt[3]{-26+6\sqrt{33}}+\sqrt[3]{-26-6\sqrt{33}}} \cdot \sqrt{8+2\sqrt[3]{19+3\sqrt{33}}+2\sqrt[3]{19-3\sqrt{33}}}=6$$

Let $$z= \sqrt[3]{-26+6\sqrt{33}}+\sqrt[3]{-26-6\sqrt{33}}$$ and
$$z' = \sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}$$

we can write it as

$$\sqrt{4+z} \cdot \sqrt{8+2z'}=6$$

or $$32 + 8z + 8z' + 2zz' = 36$$

solving for z' we get

$$z' = \frac{2 - 4z}{4 + z}$$

we put in z in the expression

$$z' = \frac{2 - 4\sqrt[3]{-26+6\sqrt{33}} -4\sqrt[3]{-26-6\sqrt{33}})}{4 + \sqrt[3]{-26+6\sqrt{33}}+\sqrt[3]{-26-6\sqrt{33}}}$$

then try and simplify. Wolfram Alpha says it does simplify to exactly z' but so far I have not been able to do it.

[\SPOILER]
 
Last edited:
  • #14
I finally have finished my proof in a direct form.

given

$$\sqrt{4+\sqrt[3]{-26+6\sqrt{33}}+\sqrt[3]{-26-6\sqrt{33}}} \cdot \sqrt{8+2\sqrt[3]{19+3\sqrt{33}}+2\sqrt[3]{19-3\sqrt{33}}}=6$$

write it as
$$\sqrt{4+ a + b} \sqrt{8+2c + 2d} = 6$$

expand
$$ \sqrt{32 + 8(a + b + c + d) + 2(ac + ad + bc + bd)} = 6$$

then

##a = \sqrt[3]{-26 + 6\sqrt{33}}\hspace{0.5cm} b= \sqrt[3]{-26 - 6\sqrt{33}}\hspace{0.5cm}c = \sqrt[3]{19 + 3\sqrt{33}} \hspace{0.5cm}d= \sqrt[3]{19 - 3\sqrt{33}}##

Details of the working out of these expressions are in the appendix below.

##ac = 1 + \sqrt{33}\hspace{0.5cm}bd = 1 - \sqrt{33}\hspace{0.5cm}ad = -4\sqrt[3]{17-3\sqrt{33}}\hspace{0.5cm}bc = -4\sqrt[3]{17+3\sqrt{33}}##

Evaluating the sum of terms it is convenient to add ##a+d## and ##b+c## separately.

##a + d = \sqrt[3]{17+3\sqrt{33}}\hspace{0.5cm}b + c = \sqrt[3]{17-3\sqrt{33}}##

therefore

$$ \sqrt{32 + 8\sqrt[3]{17+3\sqrt{33}}) +8\sqrt[3]{17-3\sqrt{33}}+ 2\left( 1 + \sqrt{33} + 1 - \sqrt{33} -4\sqrt[3]{17+3\sqrt{33}} -4\sqrt[3]{17-3\sqrt{33}}\right)} = 6$$

giving

$$ \sqrt{32 + 4} = \sqrt{36} = 6$$

Appendix:
Again;
##a = \sqrt[3]{-26 + 6\sqrt{33}}\hspace{0.5cm} b= \sqrt[3]{-26 - 6\sqrt{33}}\hspace{0.5cm}c = \sqrt[3]{19 + 3\sqrt{33}} \hspace{0.5cm}d= \sqrt[3]{19 - 3\sqrt{33}}##

$$ac = \sqrt[3]{-26 + 6\sqrt{33}} \sqrt[3]{19 + 3\sqrt{33}} = \sqrt[3]{-26*19 +18*33 +(6*19-3*26)\sqrt{33}} = \sqrt[3]{100 + 36\sqrt{33}} = \sqrt[3]{(1 + \sqrt{33})^3} = 1 + \sqrt{33}$$
likewise
$$bd = \sqrt[3]{-26 - 6\sqrt{33}} \sqrt[3]{19 - 3\sqrt{33}} = \sqrt[3]{-26*19 +18*33 +(-6*19+3*26)\sqrt{33}} = \sqrt[3]{100 - 36\sqrt{33}} = \sqrt[3]{(1 - \sqrt{33})^3} = 1 - \sqrt{33}$$

$$ad = \sqrt[3]{-26 + 6\sqrt{33}} \sqrt[3]{19 - 3\sqrt{33}} = \sqrt[3]{-26*19 -18*33 +(6*19+3*26)\sqrt{33}} = \sqrt[3]{-1088 + 192\sqrt{33}} = \sqrt[3]{64(-1 7+ 3\sqrt{33})} = -4\sqrt[3]{17 - 3\sqrt{33}}$$
likewise
$$bc = \sqrt[3]{-26 - 6\sqrt{33}} \sqrt[3]{19 + 3\sqrt{33}} = \sqrt[3]{-26*19 -18*33 -(6*19+3*26)\sqrt{33}} = \sqrt[3]{-1088 - 192\sqrt{33}} = \sqrt[3]{64(-1 7- 3\sqrt{33})} = -4\sqrt[3]{17 + 3\sqrt{33}}$$

Now for the sum ##(a + d)## we use the relation ##(a + d)^3 = a^3 + d^3 +3a^2d + 3ad^2##

##a^2d = a (ad) = -4\sqrt[3]{(-26 + 6\sqrt{33})(17 - 3\sqrt{33})} = -4\sqrt[3]{-1036 + 180\sqrt{33}} = \sqrt[3]{66304 - 11520\sqrt{33}} = \sqrt[3]{(28 - 4\sqrt{33})^3} = 28 - 4\sqrt{33}##

##ad^2 = (ad)d = -4\sqrt[3]{(17 - 3\sqrt{33})(19 - 3\sqrt{33})} = -4\sqrt[3]{620 - 108\sqrt{33}} = -\sqrt[3]{39680 - 6912\sqrt{33}} = \sqrt[3]{(-20 + 4\sqrt{33})^3} = -20 + 4\sqrt{33}##

so ##(a + d)^3 = -26 + 6\sqrt{33} + 19 - 3\sqrt{33} +3(28 - 4\sqrt{33}) + 3( -20 + 4\sqrt{33}) = -7 +3\sqrt{33} +84 -12\sqrt{33} -60 +12\sqrt{33} = 17 +3\sqrt{33}##

thus ##(a + d) = \sqrt[3]{ 17 +3\sqrt{33}}##

Likewise for the sum ##(b + c)## we use the relation ##(b + c)^3 = b^3 + c^3 +3b^2c + 3bc^2##

##b^2c = b (bc) = -4\sqrt[3]{(-26 - 6\sqrt{33})(17 + 3\sqrt{33})} = -4\sqrt[3]{-1036 - 180\sqrt{33}} = \sqrt[3]{66304 + 11520\sqrt{33}} = \sqrt[3]{(28 + 4\sqrt{33})^3} = 28 + 4\sqrt{33}##

##bc^2 = (bc)c = -4\sqrt[3]{(17 + 3\sqrt{33})(19 + 3\sqrt{33})} = -4\sqrt[3]{620 + 108\sqrt{33}} = -\sqrt[3]{39680 + 6912\sqrt{33}} = \sqrt[3]{(-20 - 4\sqrt{33})^3} = -20 - 4\sqrt{33}##

so ##(b + c)^3 = -26 - 6\sqrt{33} + 19 + 3\sqrt{33} +3(28 + 4\sqrt{33}) + 3( -20 - 4\sqrt{33}) = -7 -3\sqrt{33} +84 +12\sqrt{33} -60 -12\sqrt{33} = 17 -3\sqrt{33}##

thus ##(b + c) = \sqrt[3]{ 17 -3\sqrt{33}}##

[\SPOILER]
 
Last edited:
Back
Top