Malmstrom
- 17
- 0
Consider the problem
y'=\sqrt{y^2+x^2+1}
y(0)=0
Prove that the solution is defined for all x \in \mathbb{R} and that y(x) \geq \sinh (x) \forall x \geq 0
y'=\sqrt{y^2+x^2+1}
y(0)=0
Prove that the solution is defined for all x \in \mathbb{R} and that y(x) \geq \sinh (x) \forall x \geq 0