MHB Is the Square Matrix A Invertible Given A^2 + A + I = 0?

Yankel
Messages
390
Reaction score
0
A is a square matrix such as:

A^2 + A + I = 0

Which answer is correct ?

a. A^-1 = A
b. A^-1 = A^2
c. We can't tell if A is invertable
d.A is not invertable
e. A^-1 = A + I

I have tried to play with the equation, I tried to multiply in A^-1 and to isolate it, but it didn't get me anywhere...I need help (Worried)

thanks
 
Physics news on Phys.org
Note that A^2 + A + I = 0 implies A^2 + A = - I and so - A^2 - A = I

But - A^2 - A = A ( -A - I) thus A ( - A - I ) = I . Now, clearly this means A^{-1} = -A - I because det (A) det (-A-I) = det ( A (-A - I) ) = det I = 1 thus it is invertible.

Finally A^2 + A + I = 0 implies A^2 = - A - I ... so in fact A^{-1} = A^2 .
 
Yankel said:
A is a square matrix such as:

A^2 + A + I = 0

Which answer is correct ?

a. A^-1 = A
b. A^-1 = A^2
c. We can't tell if A is invertable
d.A is not invertable
e. A^-1 = A + I

I have tried to play with the equation, I tried to multiply in A^-1 and to isolate it, but it didn't get me anywhere...I need help (Worried)

thanks

We can rewrite the equation that A satisfies as:

-(A^2+A)=I

hence:

-(A+I)A=I

and:

-A(A+I)=I

So -(A+I) is the inverse of A and -(A+I)=A^2

CB

---------- Post added at 11:16 AM ---------- Previous post was at 11:12 AM ----------

PaulRS said:
Note that A^2 + A + I = 0 implies A^2 + A = - I and so - A^2 - A = I

But - A^2 - A = A ( -A - I) thus A ( - A - I ) = I . Now, clearly this means A^{-1} = -A - I because det (A) det (-A-I) = det ( A (-A - I) ) = det I = 1 thus it is invertible.

Finally A^2 + A + I = 0 implies A^2 = - A - I ... so in fact A^{-1} = A^2 .

You don't need the discussion of determinants, A is invertible if there exists a matrix B such that AB=BA=I.

That is if you show that B is both a right and a left inverse of A then A is invertible and B is the inverse.

CB
 
Last edited:
Thanks guys !

I am ashamed, I actually got to the point of A(-A-I)=I and did figure out that A^-1=-A-I...silly of me not to to go back and see that A^2 is also -A-I, it's so obvious from the question...thanks for that !

:-)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top