MHB Is the Square Matrix A Invertible Given A^2 + A + I = 0?

Yankel
Messages
390
Reaction score
0
A is a square matrix such as:

A^2 + A + I = 0

Which answer is correct ?

a. A^-1 = A
b. A^-1 = A^2
c. We can't tell if A is invertable
d.A is not invertable
e. A^-1 = A + I

I have tried to play with the equation, I tried to multiply in A^-1 and to isolate it, but it didn't get me anywhere...I need help (Worried)

thanks
 
Physics news on Phys.org
Note that A^2 + A + I = 0 implies A^2 + A = - I and so - A^2 - A = I

But - A^2 - A = A ( -A - I) thus A ( - A - I ) = I . Now, clearly this means A^{-1} = -A - I because det (A) det (-A-I) = det ( A (-A - I) ) = det I = 1 thus it is invertible.

Finally A^2 + A + I = 0 implies A^2 = - A - I ... so in fact A^{-1} = A^2 .
 
Yankel said:
A is a square matrix such as:

A^2 + A + I = 0

Which answer is correct ?

a. A^-1 = A
b. A^-1 = A^2
c. We can't tell if A is invertable
d.A is not invertable
e. A^-1 = A + I

I have tried to play with the equation, I tried to multiply in A^-1 and to isolate it, but it didn't get me anywhere...I need help (Worried)

thanks

We can rewrite the equation that A satisfies as:

-(A^2+A)=I

hence:

-(A+I)A=I

and:

-A(A+I)=I

So -(A+I) is the inverse of A and -(A+I)=A^2

CB

---------- Post added at 11:16 AM ---------- Previous post was at 11:12 AM ----------

PaulRS said:
Note that A^2 + A + I = 0 implies A^2 + A = - I and so - A^2 - A = I

But - A^2 - A = A ( -A - I) thus A ( - A - I ) = I . Now, clearly this means A^{-1} = -A - I because det (A) det (-A-I) = det ( A (-A - I) ) = det I = 1 thus it is invertible.

Finally A^2 + A + I = 0 implies A^2 = - A - I ... so in fact A^{-1} = A^2 .

You don't need the discussion of determinants, A is invertible if there exists a matrix B such that AB=BA=I.

That is if you show that B is both a right and a left inverse of A then A is invertible and B is the inverse.

CB
 
Last edited:
Thanks guys !

I am ashamed, I actually got to the point of A(-A-I)=I and did figure out that A^-1=-A-I...silly of me not to to go back and see that A^2 is also -A-I, it's so obvious from the question...thanks for that !

:-)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top