MHB Is the Square Matrix A Invertible Given A^2 + A + I = 0?

Yankel
Messages
390
Reaction score
0
A is a square matrix such as:

A^2 + A + I = 0

Which answer is correct ?

a. A^-1 = A
b. A^-1 = A^2
c. We can't tell if A is invertable
d.A is not invertable
e. A^-1 = A + I

I have tried to play with the equation, I tried to multiply in A^-1 and to isolate it, but it didn't get me anywhere...I need help (Worried)

thanks
 
Physics news on Phys.org
Note that A^2 + A + I = 0 implies A^2 + A = - I and so - A^2 - A = I

But - A^2 - A = A ( -A - I) thus A ( - A - I ) = I . Now, clearly this means A^{-1} = -A - I because det (A) det (-A-I) = det ( A (-A - I) ) = det I = 1 thus it is invertible.

Finally A^2 + A + I = 0 implies A^2 = - A - I ... so in fact A^{-1} = A^2 .
 
Yankel said:
A is a square matrix such as:

A^2 + A + I = 0

Which answer is correct ?

a. A^-1 = A
b. A^-1 = A^2
c. We can't tell if A is invertable
d.A is not invertable
e. A^-1 = A + I

I have tried to play with the equation, I tried to multiply in A^-1 and to isolate it, but it didn't get me anywhere...I need help (Worried)

thanks

We can rewrite the equation that A satisfies as:

-(A^2+A)=I

hence:

-(A+I)A=I

and:

-A(A+I)=I

So -(A+I) is the inverse of A and -(A+I)=A^2

CB

---------- Post added at 11:16 AM ---------- Previous post was at 11:12 AM ----------

PaulRS said:
Note that A^2 + A + I = 0 implies A^2 + A = - I and so - A^2 - A = I

But - A^2 - A = A ( -A - I) thus A ( - A - I ) = I . Now, clearly this means A^{-1} = -A - I because det (A) det (-A-I) = det ( A (-A - I) ) = det I = 1 thus it is invertible.

Finally A^2 + A + I = 0 implies A^2 = - A - I ... so in fact A^{-1} = A^2 .

You don't need the discussion of determinants, A is invertible if there exists a matrix B such that AB=BA=I.

That is if you show that B is both a right and a left inverse of A then A is invertible and B is the inverse.

CB
 
Last edited:
Thanks guys !

I am ashamed, I actually got to the point of A(-A-I)=I and did figure out that A^-1=-A-I...silly of me not to to go back and see that A^2 is also -A-I, it's so obvious from the question...thanks for that !

:-)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
21
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K