cthugha,
You said:
What part of "Lundeen has not measured the wavefunction of an individual particle" is so hard to understand? I have given you an excerpt of a peer reviewed article from Steinberg's group beforehand clearly stating that discussing such properties of individual particles is meaningless.
This is just false.
When you look at Lundeen, he showed a one to one correspondence with the spatial wave function of a SINGLE PHOTONS with the spatial wave function of an ensemble of photons. The spatial wave function of a single photon was reconstructed over an ensemble of photons. It just doesn't get much clearer than that.
Like I said, Ballentine shows zero evidence that the wave function isn't real. All I see is a bunch of conjecture that's born out of the desire to remove the mysteries of QM whatever that means. It's just shut up and calculate. Here's David Merman:
"For the notion that probabilistic theories must be about ensembles implicitly assumes that probability is about ignorance. (The “hidden variables” are whatever it is that we are ignorant of.) But in a non-determinstic world probability has nothing to do with incomplete knowledge, and ought not to require an ensemble of systems for its interpretation".
A minimalist interpretation of QM is another form of shut up and calculate which is lacking. Where's the evidence that the quantum system isn't in multiple "real" states prior to measurement? This is what gives rise to the quantum properties that we see in experiment after experiment.
In fact, how can we do calculations on probable states if these probable states are not real when it comes to quantum computing?
More on Quantum Computing and Schrodinger's cat:
The Ensemble Interpretation states that superpositions are nothing but subensembles of a larger statistical ensemble. That being the case, the state vector would not apply to individual cat experiments, but only to the statistics of many similar prepared cat experiments. Proponents of this interpretation state that this makes the Schrödinger's cat paradox a trivial non issue. However, the application of state vectors to individual systems, rather than ensembles, has explanatory benefits, in areas like single-particle twin-slit experiments and quantum computing. As an avowedly minimalist approach, the Ensemble Interpretation does not offer any specific alternative explanation for these phenomena.
The single particle has to be in two real states in order for a calculation to occur. The single particle can be in two real states or a qubit prior to measurement.
This is from a paper titled A single-atom electron spin qubit in silicon.
Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out7, 8, 9. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched 28Si samples10, 11. Combined with a device architecture12 that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer.
http://www.nature.com/nature/journal/v489/n7417/full/nature11449.html
When it comes to underlying states.
Of course all of these states are real and that's the point. All of these states are coherent and real prior to measurement and this is why we can show single particles in a state of superposition. So the underlying reality of the system(particle) is real. This underlying reality is the wave function in a pure coherent state where pure states simultaneously exist prior to decoherence.
Ballentine's blunder on the Quantum Zeno Effect.
Leslie Ballantine promoted the Ensemble Interpretation in his book "Quantum Mechanics, A Modern Development". In it [6], he described what he called the "Watched Pot Experiment". His argument was that, under certain circmstances, a repeatedly measured system, such as an unstable nucleus, would be prevented from decaying by the act of measurement itself. He initially presented this as a kind of reductio ad absurdum of wave function collapse.
Of course he was wrong when he said:
"Like the old saying "A watched pot never boils", we have been led to the conclusion that a continuously observed system never changes its state! This conclusion is, of course false.
Wrong.
One last thing. there was a poll taken by Anton Zeilinger at the Quantum Physics and Nature of Reality conference in Austria in 2011. Here's what they thought about ensemble interpretations.
Right interpretation of state vectors:
27%: epistemic/informational
24%: ontic
33%: a mix of epistemic and ontic
3%: purely statistical as in ensemble interpretation
12%: other
As you see, the ensemble interpretation got 3%.
I chose not to label the "ensemble interpretation" as correct because the ensemble interpretation makes the claim that only the statistics of the huge repetition of the very same experiment may be predicted by quantum mechanics. This is a very "restricted" or "modest" claim about the powers of quantum mechanics and this modesty is actually wrong. Even if I make 1 million completely different experiments, quantum physics may predict things with a great accuracy.
Imagine that you have 1 million different unstable nuclei (OK, I know that there are not this many isotopes: think about molecules if it's a problem for you) with the lifetime of 10 seconds (for each of them). You observe them for 1 second. Quantum mechanics predicts that 905,000 plus minus 1,000 or so nuclei will remain undecayed (it's not exactly 900,000 because the decrease is exponential, not linear). The relatively small error margin is possible despite the fact that no pair of the nuclei consisted of the same species!
So it's just wrong to say that you need to repeat exactly the same experiment many times. If you want to construct a "nearly certain" proposition – e.g. the proposition that the number of undecayed nuclei in the experiment above is between 900,000 and 910,000 – you may combine the probabilistically known propositions in many creative ways. That's why one shouldn't reduce the probabilistic knowledge just to some particular non-probabilistic one. You could think it's a "safe thing to do". However, you implicitly make statements that quantum mechanics can't achieve certain things – even though it can.
Here's more about the conference:
http://www.technologyreview.com/view/509691/poll-reveals-quantum-physicists-disagreement-about-the-nature-of-reality/
So again, the ensemble interpretation flies in the face of experiment after experiment. It's a way of saying Quantum weirdness can't be objectively real but the truth is, it's an underlying reality for the quantum system not the classical experience.