Is there a relationship between the energy and mass of photons?

AI Thread Summary
Photons do not have mass in the traditional sense, as they travel at the speed of light, which prohibits any mass-bearing particle from reaching that velocity. The discussion highlights the distinction between invariant mass and relativistic mass, with some arguing that photons can be considered to have an analog of mass due to their energy and effects like radiation pressure. The equations E = mc² and E = hf are often misinterpreted; while E = mc² applies to particles with mass, E = hf relates to the energy of photons without implying they possess mass. The concept of relativistic mass is debated, with some asserting it is a useful teaching tool, while others argue it is a fallacy that complicates understanding. Overall, the relationship between energy, mass, and the behavior of photons remains a complex topic in quantum mechanics.
erty
Messages
26
Reaction score
0
These are some of the very fundamental things about the wave/particle-duality, I do not understand:

1) Do photons have a mass?

2) Do particles have a frequency? E = hf, how do I interpret this?

3) E = mc^2 and E = hf. I've seen these two equations combined into mc^2 = hf, indicating that a photon does have a mass. I can't see why the to equations are combined, the E's in the equations are about something different.
 
Last edited:
Science news on Phys.org
Ok firstly, let me correct you grammar :) Its DO photons have mass, and the answer is: no.

they do not have mass because they move at the speed of light, or you could put the conditions the other way I am not sure. Einstines equations prohibit anything with mass from traveling at c as it would require an infinite amount of energy to accelerate them to that velocity.

2.) They do, but not directly through that equation. Particles have, or rather i should say, the probability of finding a particle has a wavefunction which has a wavelength, known as the debroglie wavelength, if you look that up you will find some better answers than i could give you.

It is a common misconseption to think that a particle is spread over an area like a wave, it is not. A particle, when you measure its position, will be in one spot and one spot only. The probability however does resemble a wave, or has wavelike behaviour.

3.) Photons do not have mass but have an analog of mass which gives them a kind of inertia, i think, which gives rise to things like radiation pressure.

Hope this helps
-G
 
FunkyDwarf said:
Ok firstly, let me correct you grammar :)
Yes, I stand corrected. I changed "a photon/particle" to photons/particles, but forgot to correct the rest.

FunkyDwarf said:
Its DO photons have mass, and the answer is: no.

they do not have mass because they move at the speed of light, or you could put the conditions the other way I am not sure. Einstines equations prohibit anything with mass from traveling at c as it would require an infinite amount of energy to accelerate them to that velocity.
...
3.) Photons do not have mass but have an analog of mass which gives them a kind of inertia, i think, which gives rise to things like radiation pressure.
Then how do I validate hf = mc^2, if it can't be applied to something like photons: they do have energy, but not any mass.
Does this have something to do with the wave/particle duality? Electrons exhibit the same properties, but they do have a mass (but they don't move at the speed of light).

FunkyDwarf said:
2.) They do, but not directly through that equation. Particles have, or rather i should say, the probability of finding a particle has a wavefunction which has a wavelength, known as the debroglie wavelength, if you look that up you will find some better answers than i could give you.

It is a common misconseption to think that a particle is spread over an area like a wave, it is not. A particle, when you measure its position, will be in one spot and one spot only. The probability however does resemble a wave, or has wavelike behaviour.

I will look it up. thanks so far.
 
erty said:
These are some of the very fundamental things about the wave/particle-duality, I do not understand:

1) Do photons have a mass?

The answer to that question depends on the definition of mass. Often, people mean by mass the rest mass or invariant mass. If this is meant, one can say that photons have no mass. Since a photon is never at rest, the "rest mass" is however an absurd quantity for a photon. In this case, it makes more sense to look at the "relativistic mass" definition, which correspond to the total, real, relativistic energy when the particle is moving. If this mass is meant, then a photon has definitely a mass. To find the mass, just take the relation between frequency and energy (E = h v(freq)). Then divide E by c^2 to find the mass of the photon.

PS : Note that the equation E=m c^2 is generally valid when m is the relativistic mass.
 
notknowing said:
In this case, it makes more sense to look at the "relativistic mass" definition, which correspond to the total, real, relativistic energy when the particle is moving. If this mass is meant, then a photon has definitely a mass. To find the mass, just take the relation between frequency and energy (E = h v(freq)). Then divide E by c^2 to find the mass of the photon.

PS : Note that the equation E=m c^2 is generally valid when m is the relativistic mass.
A photon does not have mass, invariant or "relativistic". Which ever way you look at it, it is nonsensical for a photon to have any sort of mass. And the equation E = mc2 is not valid for any zero invariant mass particle, including the photon. I will say here as I have done many times before, the idea of "relativistic mass" is a fallacy, which is often used to teach special relativity at a very elementary level. Relativistic mass does not exist, i.e. the faster an object travels does not mean that it gains more mass; it simply means the momentum of an object increases at a greater rate than classically predicted.
 
hey the mass actually doesn't increase,but energy increases which give an EFFECT of more mass
 
mass is a FORM of energy,a photon is a different form of energy.Mass and light energy are different due to energy density.


Is my understanding correct?
 
Hootenanny said:
Relativistic mass does not exist, i.e. the faster an object travels does not mean that it gains more mass; it simply means the momentum of an object increases at a greater rate than classically predicted.

Could you expand on this a little? My understanding, and that of my physics lecturer, is that the measured mass is more if something is moving relative to the observer, the phenomenon known as mass addition. Seems to make sense to me, am i missing something?

-G
 
FunkyDwarf said:
A particle, when you measure its position, will be in one spot and one spot only.

Yes, but this is not true if we DON'T measure the position. In the latter case, a "particle" also has non particle like properties.

The probability however does resemble a wave, or has wavelike behaviour.
The probability has wavelike behaviour but for that to happen the "particle" must be expressed as a wave. So, it is not just a particle of which the probability of finding it has wavelike behaviour, which IS what you seem to be suggesting. Both the "particle language" and the "wave language" are equivalent in the QM formalism. You seem to be make a distinction between the particle and it's probability as a wave. This is INCORRECT. It is the physical object itself that is written either as a particle (in terms of momentum eg) or as a wave (in terms of a wavelength eg)

marlon
 
  • #10
Hootenanny said:
A photon does not have mass, invariant or "relativistic".
This is not correct.
Hootenanny said:
Which ever way you look at it, it is nonsensical for a photon to have any sort of mass. And the equation E = mc2 is not valid for any zero invariant mass particle, including the photon..
Again not correct. Consider an empty box with perfect mirrors on the inside and determine its weight by a balance. Then, "inject" a certain amount of photons into this box. Weigh the box again. Do you really think it will weigh exactly the same as before ? If not, photons can be considered to have mass.
Hootenanny said:
I will say here as I have done many times before, the idea of "relativistic mass" is a fallacy, which is often used to teach special relativity at a very elementary level. Relativistic mass does not exist, i.e. the faster an object travels does not mean that it gains more mass; it simply means the momentum of an object increases at a greater rate than classically predicted.
Again not correct. Relativistic mass is (per definition) that mass you obtain by dividing its energy by c^2 and this mass takes into account the mass increase due to the relative velocity.

You can verify all these things in elementary books on special relativity.
 
  • #11
Everyone, please do a search on "relativistic mass", especially in the Relativity forum. There's nothing here that hasn't been said a gazillion times already in many existing threads. Please continue this discussion there.

Zz.
 
Back
Top