MHB Is This a Valid Vector Space with Unusual Operations?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
On the set of vectors
$\begin{bmatrix}
x_1 \\ y_1
\end{bmatrix}\in \Bbb{R}^2 $
with $x_1 \in \Bbb{R}$, and $y_1$ in $\Bbb{R}^{+}$ (meaning $y_1 >0$) define an addition by
$$\begin{bmatrix}
x_1 \\ y_1
\end{bmatrix} \oplus
\begin{bmatrix}
x_2 \\ y_2
\end{bmatrix}
=
\begin{bmatrix}
x_1 + x_2 \\ y_1y_2
\end{bmatrix}$$
and a scalar multiplication by
$$ k \odot
\begin{bmatrix}
x \\ y
\end{bmatrix} =
\begin{bmatrix}
k x \\ y^{k}
\end{bmatrix}.
$$
Determine if this is a vector space.
If it is, make sure to explicitly state what the $0$ vector is.
OK the only the only thing I could come up with was $2+2=4$ and $2\cdot 2=4$
and zero vectors are orthogonal with $k=2$
 
Last edited:
Physics news on Phys.org
karush said:
On the set of vectors
$\begin{bmatrix}
x_1 \\ y_1
\end{bmatrix}\in \Bbb{R}^2 $
with $x_1 \in \Bbb{R}$, and $y_1$ in $\Bbb{R}^{+}$ (meaning $y_1 >0$) define an addition by
$$\begin{bmatrix}
x_1 \\ y_1
\end{bmatrix} \oplus
\begin{bmatrix}
x_2 \\ y_2
\end{bmatrix}
=
\begin{bmatrix}
x_1 + x_2 \\ y_1y_2
\end{bmatrix}$$
and a scalar multiplication by
$$ k \odot
\begin{bmatrix}
x \\ y
\end{bmatrix} =
\begin{bmatrix}
k x \\ y^{k}
\end{bmatrix}.
$$
Determine if this is a vector space.
If it is, make sure to explicitly state what the $0$ vector is.
OK the only the only thing I could come up with was $2+2=4$ and $2\cdot 2=4$
and zero vectors are orthogonal with $k=2$
"zero vectors?" There's only one.

I've got closure, associativity, a zero vector, additive inverses, and it's even commutative. However it doesn't obey the distributive law.

Can you get these?

-Dan
 
ok I don't know how you would try the distributive property since the scalar was different
Distributive law: For all real numbers c and all vectors $u, v \in V$, $ c\cdot(u + v) = c\cdot u + c\cdot v$
 
karush said:
ok I don't know how you would try the distributive property since the scalar was different
Distributive law: For all real numbers c and all vectors $u, v \in V$, $ c\cdot(u + v) = c\cdot u + c\cdot v$
I had this whole blasted thing written out in LaTeX just to find out I made an error. The distributive law also works.

Here it is anyway.

[math]k \odot \left ( \left [ \begin{matrix} x_1 \\ y_1 \end{matrix} \right ] \oplus \left [ \begin{matrix} x_2 \\ y_2 \end{matrix} \right ] \right )
= \left ( k \odot \left [ \begin{matrix} x_1 \\ y_1 \end{matrix} \right ] \right ) \oplus \left ( k \odot \left [ \begin{matrix} x_2 \\ y_2 \end{matrix} \right ] \right ) = \left [ \begin{matrix} kx_1 \\ y_1^k \end{matrix} \right ] \oplus \left [ \begin{matrix} kx_2 \\ y_2^k \end{matrix} \right ] = \left [ \begin{matrix} kx_1 + kx_2 \\ y_1^k y_2^k \end{matrix} \right ][/math]

[math]k \odot \left ( \left [ \begin{matrix} x_1 \\ y_1 \end{matrix} \right ] \oplus \left [ \begin{matrix} x_2 \\ y_2 \end{matrix} \right ] \right ) = k \odot \left [ \begin{matrix} x_1 + x_2 \\ y_1 y_2 \end{matrix} \right ] = \left [ \begin{matrix} k(x_1 + x_2 ) \\ (y_1 y_2)^k \end{matrix} \right ] [/math]

So they are the same.

-Dan
 
The 0 vector (additive identity) is $\begin{bmatrix}0 \\ 1\end{bmatrix}$: for any vector $v= \begin{bmatrix}a \\ b\end{bmatrix}$, $v+ 0= 0+ v= \begin{bmatrix}a+ 0 \\ b(1)\end{bmatrix}= \begin{bmatrix}a \\ b\end{bmatrix}= v$.

What about the additive inverse of $\begin{bmatrix}a \\ b\end{bmatrix}$? Calling that $\begin{bmatrix}p \\ q\end{bmatrix}$, We must have $\begin{bmatrix}a \\ b\end{bmatrix}+ \begin{bmatrix}p \\ q \end{bmatrix}= \begin{bmatrix}a+ p \\ bq \end{bmatrix}= \begin{bmatrix} 0 \\ 1\end{pmatrix}$ so we have a+ p= 0 and bq= 1 so we must have p= -a and q= 1/b. That is the reason for the condition "y> 0".
 
That was a great help ..
Much Mahalo

It hard to find really good help with these
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...