MHB Is Triangle PQR Isosceles Based on Angle Equality?

  • Thread starter Thread starter woof123
  • Start date Start date
woof123
Messages
9
Reaction score
0
I can't figure this one out...(I may not have drawn it exactly how it was drawn in the book)

View attachment 6270
 

Attachments

  • Capture.JPG
    Capture.JPG
    10.5 KB · Views: 110
Mathematics news on Phys.org
woof123 said:
I can't figure this one out...(I may not have drawn it exactly how it was drawn in the book)
angle PRQ = 180 - 2x by supplementary angles.

Thus angle PQR = 180 - (x) - (180 - 2x) = x. What does this tell you?

-Dan
 
OK, I get x, meaning the sides opposite to the x angles are equal.

Thanks so much
 
Okay, let's label the unknown angles:

\begin{tikzpicture}
\draw[blue,thick] (0,0) -- (12,0);
\draw[blue,thick] (12,0) -- (8,4);
\draw[blue,thick] (8,4) -- (0,0);
\draw[blue,thick] (8,4) -- (6,0);
\node[left=5pt of {(0,0)}] {\large P};
\node[above=5pt of {(8,4)}] {\large Q};
\node[below=5pt of {(6,0)}] {\large R};
\node[right=5pt of {(12,0)}] {\large S};
\node[right=15pt of {(0,0)},yshift=5pt] {\large $x$};
\node[right=5pt of {(6,0)},yshift=7pt] {\large $2x$};
\node[left=5pt of {(8,4)},yshift=-13pt] {\large $\alpha$};
\node[below=3pt of {(8,4)}] {\large $\beta$};
\node[left=10pt of {(12,0)},yshift=7pt] {\large $\delta$};
\node[above=0pt of {(6,0)},xshift=-3pt] {\large $\gamma$};
\end{tikzpicture}

Now, we know the following:

$$2x+\gamma=180^{\circ}$$

$$x+\alpha+\gamma=180^{\circ}$$

$$2x+\beta+\delta=180^{\circ}$$

$$x+\alpha+\beta+\delta=180^{\circ}$$

We need to show that:

$$x=\alpha$$

Look at the first two equations above, and we see that:

$$180^{\circ}-\gamma=2x=x+\alpha$$

What does this imply?
 
I would like to express my opinion here ;)

Theorem: The exterior angle formed when a side of a triangle is produced
is equal to the sum of the two interior opposite angles.

Now using this theorem,

$2x=x+\angle PQR$
$2x-x= \angle PQR$
$x= \angle PQR$

Then we may recall the theorem,

Theorem (Converse of the theorem on isosceles triangles):
The sides opposite equal angles of a triangle are equal

Now since we have proved that $ \angle PQR =\angle QPR$ what can be said about the sides PQ and PR ?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
2K
Replies
17
Views
5K
Replies
1
Views
1K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K
Back
Top