Dick
Science Advisor
Homework Helper
- 26,254
- 623
Let ##X## and ##Y## be connected subsets of some set ##U##. Suppose ##X-Y=A \cup B## and there are open sets ##N## and ##M## such that ##A \subseteq N## and ##B \subseteq M## and ##N \cap M=\phi##. Now show ##Y \cup A## is connected.
Assume ##C## and ##D## separate ##Y \cup A## such that ##Y \subseteq C##. Then clearly ##A \cap D## is nonempty. Then ##D \cap N## (this part contains ##A \cap D##) and ##C \cup M## (this contains the rest of ##X##) separate ##X##. They are disjoint because ##C \cap D=\phi## and ##N \cap M=\phi##. This contradicts ##X## being connected hence ##Y \cup A## is connected. QED.
I don't know why this is so elusive...
Assume ##C## and ##D## separate ##Y \cup A## such that ##Y \subseteq C##. Then clearly ##A \cap D## is nonempty. Then ##D \cap N## (this part contains ##A \cap D##) and ##C \cup M## (this contains the rest of ##X##) separate ##X##. They are disjoint because ##C \cap D=\phi## and ##N \cap M=\phi##. This contradicts ##X## being connected hence ##Y \cup A## is connected. QED.
I don't know why this is so elusive...