Spin satisfies
\begin{align}
\mathbf{S}_1 \cdot \mathbf{S}_2 &= \frac{1}{2}(\mathbf{S}^2 - \mathbf{S}_1^2 - \mathbf{S}_2^2 ) \\
&= \frac{1}{2}[S(S+1) - S_1(S_1 + 1) - S_2(S_2 + 1)].
\end{align}
If the total spin is ##\frac{1}{2} - \frac{1}{2} = 0## then
\begin{align}
\mathbf{S}_1 \cdot \mathbf{S}_2 &= \frac{1}{2}[0 - \frac{1}{2}(\frac{1}{2} + 1) - \frac{1}{2}(\frac{1}{2} + 1)] \\
&= (1/2)(-(3/4) - (3/4)) \\
&= (1/2)(-6/4) \\
&= - 3/4
\end{align}
If the total spin is ##\frac{1}{2} + \frac{1}{2} = 1## then
\begin{align}
\mathbf{S}_1 \cdot \mathbf{S}_2 &= \frac{1}{2}[2 - \frac{1}{2}(\frac{1}{2} + 1) - \frac{1}{2}(\frac{1}{2} + 1)] \\
&= \frac{1}{2}(2 - 3/4 - 3/4) \\
&= (1/2)(2/4) \\
&= 1/4
\end{align}
Treating the potential ##U = U(\mathbf{r}_1 - \mathbf{r}_2)## as a perturbation, the average interaction energy is
\begin{align*}
<U> &= \int dV_1 dV_2 \psi^* U \psi \\
&= \int dV_1 dV_2 \frac{1}{\sqrt{2}}[\psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2) \pm \psi_2^*(\mathbf{r}_1) \psi_1^*(\mathbf{r}_2)]U\frac{1}{\sqrt{2}}[\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) \pm \psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2)] \\
&= \int dV_1 dV_2 \frac{1}{2}[\psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2) \pm \psi_2^*(\mathbf{r}_1) \psi_1^*(\mathbf{r}_2)]U[\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) \pm \psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2)] \\
&= \int dV_1 dV_2 \frac{1}{2} \{ [U\psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2)\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) + U \psi_2^*(\mathbf{r}_1) \psi_1^*(\mathbf{r}_2)\psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2) ] \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \pm [U \psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2) \psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2) + U \psi_2^*(\mathbf{r}_1) \psi_1^*(\mathbf{r}_2)\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) ] \} \\
&= \frac{1}{2} \{ \int dV_1 dV_2 U\psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2)\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) + \int dV_1 dV_2 U \psi_2^*(\mathbf{r}_1) \psi_1^*(\mathbf{r}_2)\psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2) ] \\
& \ \ \ \pm [ \int dV_1 dV_2 U \psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2) \psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2) + \int dV_1 dV_2 U \psi_2^*(\mathbf{r}_1) \psi_1^*(\mathbf{r}_2)\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) ] \} \\
&= \frac{1}{2} \{ \int dV_1 dV_2 U\psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2)\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) + \int dV_2 dV_1 U \psi_2^*(\mathbf{r}_2) \psi_1^*(\mathbf{r}_1)\psi_2(\mathbf{r}_2) \psi_1(\mathbf{r}_1) ] \\
& \ \ \ \pm [ \int dV_1 dV_2 U \psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2) \psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2) + \int dV_2 dV_1 U \psi_2^*(\mathbf{r}_2) \psi_1^*(\mathbf{r}_1)\psi_1(\mathbf{r}_2) \psi_2 (\mathbf{r}_1) ] \} \\
&= \int dV_1 dV_2 U\psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2)\psi_1(\mathbf{r}_1) \psi_2 (\mathbf{r}_2) \pm \int dV_1 dV_2 U \psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2) \psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2)
\end{align*}
so that ##<U> = A \pm J##, where the ##\textit{exchange integral}##
$$ \pm J = \pm \int dV_1 dV_2 U \psi_1^*(\mathbf{r}_1) \psi_2^* (\mathbf{r}_2) \psi_2(\mathbf{r}_1) \psi_1(\mathbf{r}_2)$$
depends on the spin and so can be characterized, using ##1 = 4 \mathbf{S}_1 \cdot \mathbf{S}_2##, spin 1, and ##- 3 = 4 \mathbf{S}_1 \cdot \mathbf{S}_2##, spin 0, we can express, in terms of the spin, using ##1 = 4 \mathbf{S}_1 \cdot \mathbf{S}_2## to find ## - J## via
$$-J = - J \frac{1}{2}(1 + 1) = -J\frac{1}{2}(1 + 4 \mathbf{S}_1 \cdot \mathbf{S}_2)$$
or using ##- 3 = 4 \mathbf{S}_1 \cdot \mathbf{S}_2## to find ##+J## via
$$J = - J \frac{1}{2}(1 - 3) = - J \frac{1}{2}(1 + 4 \mathbf{S}_1 \cdot \mathbf{S}_2)$$
implying that the ##\textit{spin exchange operator}## is
$$\hat{V}_{ex} = - \frac{1}{2}J(1 +4 \mathbf{S}_1 \cdot \mathbf{S}_2).$$
In general,
$$\hat{V}_{ex} = - \frac{1}{2}\sum_{i<j} J_{ij}(1 + 4 \mathbf{S}_i \cdot \mathbf{S}_j) = - \sum_{i<j} J_{ij}(\frac{1}{2} + 2 \mathbf{S}_i \cdot \mathbf{S}_j) = - \sum_{i,j} J_{ij}(\frac{1}{4} + \mathbf{S}_i \cdot \mathbf{S}_j).$$
The Ising model considers the partition function
\begin{align}
Z' &= \sum e^{-H/T} = \sum_{\mathbf{S}} e^{-\beta (- \sum_{i,j} J_{ij}(\frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j)} = \sum_{\mathbf{S}} e^{\beta \sum_{i,j} J_{ij}\frac{1}{4}} e^{ \beta \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j} \\
&= e^{\beta \sum_{i,j} J_{ij}\frac{1}{4}} \sum_{\mathbf{S}} e^{ \beta \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j} = A \sum_{\mathbf{S}} e^{ \beta \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j}
\end{align}
or rather ##Z = Z'/A##, namely
$$Z = \sum_{\mathbf{S}} e^{ \beta \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j}$$
in the case where neighbors have the same interaction strength, ##J_{ij} = J##,
$$Z = \sum_{\mathbf{S}} e^{ \beta J \sum_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j}$$
where you assume spin is non-zero in the z direction
$$Z = \sum_{s^z} e^{ \beta J \sum_{i,j} s^z_i s^z_j}$$
and then magically assume ##s^z_i = s_i = \pm 1## to find the Ising model:
$$Z = \sum_{s} e^{ \beta J \sum_{i,j} s_i s_j}$$
Can you state the last four lines in a better way?
Hopefully the meaning of the Hamiltonian, the meaning of ##J## and the minus sign is clearer.