Robert_G
- 36
- 0
hi there; I need some help with the following formulas
In the interaction picture.
##\frac{d}{dt}\rho(t)=\frac{1}{i\hbar}[V(t),\rho(t)]## (1)
Then
##\rho(t+\Delta t) = \rho(t)+\frac{1}{i\hbar}\int_t^{t+\Delta t} dt' [V(t'),\rho(t')]## (2)
This equation can be iterated. and it is
##\Delta \rho(t)=\frac{1}{i\hbar}\int_t^{t+\Delta t} dt' [V(t'),\rho(t')]+(\frac{1}{i\hbar})^2 \int_t^{t+\Delta t} dt' \int_t^{t'}dt''[\underbrace{V(t'),[V(t'')}_{Note\;t'\;and\;t''},\rho(t'')]]## (3)
##\Delta \rho(t) = \rho(t+\Delta t) - \rho(t)##
I can understand the eq.(2), but not the eq. (3).
Is anybody know how to get the equation (3). and why do we want to do such calculation?
In the interaction picture.
##\frac{d}{dt}\rho(t)=\frac{1}{i\hbar}[V(t),\rho(t)]## (1)
Then
##\rho(t+\Delta t) = \rho(t)+\frac{1}{i\hbar}\int_t^{t+\Delta t} dt' [V(t'),\rho(t')]## (2)
This equation can be iterated. and it is
##\Delta \rho(t)=\frac{1}{i\hbar}\int_t^{t+\Delta t} dt' [V(t'),\rho(t')]+(\frac{1}{i\hbar})^2 \int_t^{t+\Delta t} dt' \int_t^{t'}dt''[\underbrace{V(t'),[V(t'')}_{Note\;t'\;and\;t''},\rho(t'')]]## (3)
##\Delta \rho(t) = \rho(t+\Delta t) - \rho(t)##
I can understand the eq.(2), but not the eq. (3).
Is anybody know how to get the equation (3). and why do we want to do such calculation?