Joint probability distribution

toothpaste666
Messages
516
Reaction score
20

Homework Statement


  1. The joint probability density function of X and Y is given by

    f(x,y)=(6/7)(x^2+ xy/2) , 0<x<1, 0<y<2.

    (a) Find the pdf of X.
    (b) Find the cdf of X.
    (c) FindP(X<.5).
    (d) Determine the conditional pdf of Y given X = x.

The Attempt at a Solution


a) the pdf is what is stated in the probem, that P(x,y) = (6/7)(x^2+ xy/2) , 0<x<1, 0<y<2. and P(x,y) = 0 elsewhere
b)
F(x,y) = \frac{6}{7} \int_0^Y \int_0^X(x^2 + \frac{xy}{2})dxdy

= \frac{6}{7} \int_0^Y (\frac{X^3}{3} + \frac{X^2y}{4})dy

= \frac{6}{7} (\frac{YX^3}{3} + \frac{X^2Y^2}{8})

c)
\frac{6}{7} \int_0^2 \int_0^.5(x^2 + \frac{xy}{2})dxdy

= \frac{6}{7} \int_0^2 (\frac{(.5)^3}{3} + \frac{(.5)^2y}{4})dy

= \frac{6}{7} (\frac{(2)(.5)^3}{3} + \frac{(.5)^2(2)^2}{8})

d) fy(y|x) = f(x,y)/fx(x)

fx(x) = \frac{6}{7}\int_0^2(x^2 + \frac{xy}{2})dy

fx(x) = \frac{6}{7}(2x^2 + x)

fy(y|x) = f(x,y)/fx(x) =

\frac{(6/7)(x^2+ xy/2)}{(6/7)(2x^2 + x)}

= \frac{x(x+ y/2)}{x(2x + 1)}

= \frac{(x+ y/2)}{(2x + 1)}Is this correct?
 
Physics news on Phys.org
toothpaste666 said:

Homework Statement


  1. The joint probability density function of X and Y is given by

    f(x,y)=(6/7)(x^2+ xy/2) , 0<x<1, 0<y<2.

    (a) Find the pdf of X.
    (b) Find the cdf of X.
    (c) FindP(X<.5).
    (d) Determine the conditional pdf of Y given X = x.

The Attempt at a Solution


a) the pdf is what is stated in the probem, that P(x,y) = (6/7)(x^2+ xy/2) , 0<x<1, 0<y<2. and P(x,y) = 0 elsewhere
b)
F(x,y) = \frac{6}{7} \int_0^Y \int_0^X(x^2 + \frac{xy}{2})dxdy

= \frac{6}{7} \int_0^Y (\frac{X^3}{3} + \frac{X^2y}{4})dy

= \frac{6}{7} (\frac{YX^3}{3} + \frac{X^2Y^2}{8})

c)
\frac{6}{7} \int_0^2 \int_0^.5(x^2 + \frac{xy}{2})dxdy

= \frac{6}{7} \int_0^2 (\frac{(.5)^3}{3} + \frac{(.5)^2y}{4})dy

= \frac{6}{7} (\frac{(2)(.5)^3}{3} + \frac{(.5)^2(2)^2}{8})

d) fy(y|x) = f(x,y)/fx(x)

fx(x) = \frac{6}{7}\int_0^2(x^2 + \frac{xy}{2})dy

fx(x) = \frac{6}{7}(2x^2 + x)

fy(y|x) = f(x,y)/fx(x) =

\frac{(6/7)(x^2+ xy/2)}{(6/7)(2x^2 + x)}

= \frac{x(x+ y/2)}{x(2x + 1)}

= \frac{(x+ y/2)}{(2x + 1)}Is this correct?

No: (a) and (b) are wrong. You are given ##f_{XY}(x,y)##, and have been asked to find ##f_X(x)## and ##F_X(x)##, the marginal pdf and cdf of ##X## alone. Anyway, what you wrote in (b) makes no sense: you have numbers ##x## and ##y## on the left in ##F(x,y)## but have random variables ##X## and ##Y## on the right.

I have not checked the details of (c), but the basic calculations look OK. Your (d) looks OK as well.
 
a)
fx(x,y) = \frac{6}{7} \int_0^2 (x^2 + \frac{xy}{2})dy

fx(x,y) = \frac{6}{7} ((2)x^2 + \frac{x(2)^2}{4})

fx(x,y) = \frac{6}{7} (2x^2 + x)

b)
Fx(x,y) = \frac{6}{7} \int_0^x(2u^2 + u)du

Fx(x,y) = \frac{6}{7} (\frac{2x^3}{3} + \frac{x^2}{2})
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K