MHB JustCurious's question at Yahoo Answers (Diagonalization)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Diagonalization
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

his problem is about diagonalization of matrices A which have n mutually orthogonal eigenvectors, each of which has length one. It is customary to write U for the matrix with columns constructed from the eigenvectors. The problem is straightforward, but requires you to follow a given suggestion. Here is the problem, followed by the suggestion.
Suppose A = UDU^-1;
where D is diagonal and U is given as above. The entries of D; U are real numbers. Show that A is equal to its transpose matrix.
Suggestion: In the diagonalization formula for A, replace U^-1 by U^T (this is valid for such matrices) and then take the transpose of both sides. Compare.
In the literature, A is called symmetric, and U is called orthogonal.

Here is a link to the question:

Diagnalization with matrices? - Yahoo! Answers


I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello JustCurious,

We have $U^{-1}=U^T$, hence $A=UDU^T$. Then, using well kown properties of transposition $$A^T=(UDU^T)^T=(U^T)^TD^TU^T=UDU^T=A$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top