MHB JustCurious's question at Yahoo Answers (Diagonalization)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Diagonalization
AI Thread Summary
The discussion focuses on the diagonalization of matrices with mutually orthogonal eigenvectors, specifically addressing the matrix A represented as A = UDU^-1, where D is diagonal and U consists of the eigenvectors. The key suggestion is to replace U^-1 with U^T, which is valid for orthogonal matrices, and then take the transpose of both sides. This leads to the conclusion that A is equal to its transpose, demonstrating that A is symmetric. The properties of transposition and orthogonality are crucial in this proof. The discussion emphasizes the relationship between diagonalization and symmetry in matrices.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

his problem is about diagonalization of matrices A which have n mutually orthogonal eigenvectors, each of which has length one. It is customary to write U for the matrix with columns constructed from the eigenvectors. The problem is straightforward, but requires you to follow a given suggestion. Here is the problem, followed by the suggestion.
Suppose A = UDU^-1;
where D is diagonal and U is given as above. The entries of D; U are real numbers. Show that A is equal to its transpose matrix.
Suggestion: In the diagonalization formula for A, replace U^-1 by U^T (this is valid for such matrices) and then take the transpose of both sides. Compare.
In the literature, A is called symmetric, and U is called orthogonal.

Here is a link to the question:

Diagnalization with matrices? - Yahoo! Answers


I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello JustCurious,

We have $U^{-1}=U^T$, hence $A=UDU^T$. Then, using well kown properties of transposition $$A^T=(UDU^T)^T=(U^T)^TD^TU^T=UDU^T=A$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top