MHB Khaled's question at Yahoo Answers regarding a Bernoulli equation

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve the given bernoulli equation ( x dy/dx + y = 1/y^2)?

Solve the given bernoulli equation ( x dy/dx + y = 1/y^2)

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello khaled,

We are given to solve:

$$x\frac{dy}{dx}+y=\frac{1}{y^2}$$

Let's first multiply through by $$\frac{y^2}{x}$$:

$$y^2\frac{dy}{dx}+\frac{y^3}{x}=\frac{1}{x}$$

Next, let's make the substitution:

$$v=y^3\,\therefore\,\frac{dv}{dx}=3y^2\frac{dy}{dx}$$

and we now have:

$$\frac{1}{3}\frac{dv}{dx}+\frac{1}{x}v=\frac{1}{x}$$

Multiply through by 3:

$$\frac{dv}{dx}+\frac{3}{x}v=\frac{3}{x}$$

We now have a linear ODE in $v$. Compute the integrating factor:

$$\mu(x)=e^{3\int\frac{dx}{x}}=x^3$$

And the ODE becomes:

$$x^3\frac{dv}{dx}+3x^2v=3x^2$$

The left side may now be rewritten as:

$$\frac{d}{dx}\left(x^3v \right)=3x^2$$

Integrate with respect to $x$:

$$\int\,d\left(x^3v \right)=3\int x^2\,dx$$

$$x^3v=x^3+C$$

$$v=1+Cx^{-3}$$

Back-substitute for $v$:

$$y^3=1+Cx^{-3}$$

Hence, the explicit solution is:

$$y(x)=\sqrt[3]{1+Cx^{-3}}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top