VinnyCee
- 486
- 0
The Problem:
A car is to be hoisted by elevator to the fourth floor of a parking garage, which is 48ft. above the ground. If the elevator can accelerate at 0.6 \frac{ft.}{s^2}, decelerate at 0.3 \frac{ft.}{s^2}, and reach a maximum speed of 8 \frac{ft.}{s}, determine the shortest time to make the lift, starting from rest and ending at rest.
Work:
s\,=\,s_0\,+\,v_0\,t\,+\,\frac{1}{2}\,a_c\,t_2
s_2\,=\,\left(0\right)\,+\,\left(0\right)\,\left(t_1\right)\,+\,\frac{1}{2}\,\left(0.6\,\frac{ft.}{s^2}\right)\,\left(t_1^2\right)
48\,ft.\,=\,\left(s_2\right)\,+\,\left(8\frac{ft.}{s}\right)\,\left(t_2\right)\,+\,\frac{1}{2}\,\left(-0.3\,\frac{ft.}{s^2}\right)\,\left(t_1^2\right)
s_2\,=\,0.15t_2^2\,-\,8t_2\,+\,48
0.3\,t_1^2\,=\,0.15\,t_2^2\,-\,8\,t_2\,+\,48
Here is my list of variables, starting with the final ones and going down to the initial ones:
v_3\,=\,0\,\,&\,\,s_3\,=\,48\,ft.
|
|
t_2\,=\,?
|
|
v_2\,=\,8\,\frac{ft.}{s}\,\,&\,\,s_2\,=\,?
|
|
t_1\,=\,?
|
|
v_1\,=\,0\,\,&\,\,s_1\,=\,0
When I use other constant acceleration equations to solve for a position (s), I get an impossible answer like 53.3 ft. when the elevator is only supposed to go to 40 ft. at max! Please help, thanks in advance.
A car is to be hoisted by elevator to the fourth floor of a parking garage, which is 48ft. above the ground. If the elevator can accelerate at 0.6 \frac{ft.}{s^2}, decelerate at 0.3 \frac{ft.}{s^2}, and reach a maximum speed of 8 \frac{ft.}{s}, determine the shortest time to make the lift, starting from rest and ending at rest.
Work:
s\,=\,s_0\,+\,v_0\,t\,+\,\frac{1}{2}\,a_c\,t_2
s_2\,=\,\left(0\right)\,+\,\left(0\right)\,\left(t_1\right)\,+\,\frac{1}{2}\,\left(0.6\,\frac{ft.}{s^2}\right)\,\left(t_1^2\right)
48\,ft.\,=\,\left(s_2\right)\,+\,\left(8\frac{ft.}{s}\right)\,\left(t_2\right)\,+\,\frac{1}{2}\,\left(-0.3\,\frac{ft.}{s^2}\right)\,\left(t_1^2\right)
s_2\,=\,0.15t_2^2\,-\,8t_2\,+\,48
0.3\,t_1^2\,=\,0.15\,t_2^2\,-\,8\,t_2\,+\,48
Here is my list of variables, starting with the final ones and going down to the initial ones:
v_3\,=\,0\,\,&\,\,s_3\,=\,48\,ft.
|
|
t_2\,=\,?
|
|
v_2\,=\,8\,\frac{ft.}{s}\,\,&\,\,s_2\,=\,?
|
|
t_1\,=\,?
|
|
v_1\,=\,0\,\,&\,\,s_1\,=\,0
When I use other constant acceleration equations to solve for a position (s), I get an impossible answer like 53.3 ft. when the elevator is only supposed to go to 40 ft. at max! Please help, thanks in advance.
Last edited: