- #1
sgstudent
- 739
- 3
When I calculate the pressure in an enclosed cylinder, I have to find the average force of the collisions of the air molecules. So that force will be the pressure per unit area.
When they make this statement is there a time variable to it? Since increasing the temperature in a fixed volume means that there is a greater frequency of the collisions then it equates it to having a greater pressure exerted. But if there's no time variable then the frequency of the collision doesn't matter.
Lastly, when a helium balloon is released into the atmosphere what happens to it? My guess is that it increases in size as the air pressure decreases as it goes up. So the gas pressure in the balloon is greater than the atmospheric pressure. Thus, the collisions of the helium molecules will result in the increase of volume such that the pressure in the balloon will be equal to the air pressure at the outside of the balloon. Hence, as it goes higher it will keep increasing in size until the point that it bursts.
Thanks for the help! :-)
When they make this statement is there a time variable to it? Since increasing the temperature in a fixed volume means that there is a greater frequency of the collisions then it equates it to having a greater pressure exerted. But if there's no time variable then the frequency of the collision doesn't matter.
Lastly, when a helium balloon is released into the atmosphere what happens to it? My guess is that it increases in size as the air pressure decreases as it goes up. So the gas pressure in the balloon is greater than the atmospheric pressure. Thus, the collisions of the helium molecules will result in the increase of volume such that the pressure in the balloon will be equal to the air pressure at the outside of the balloon. Hence, as it goes higher it will keep increasing in size until the point that it bursts.
Thanks for the help! :-)