1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Lagrangian function for beetle on paper

  1. Jan 31, 2015 #1

    CAF123

    User Avatar
    Gold Member

    1. The problem statement, all variables and given/known data

    A circle of radius ##a##, with diameter ##AB##, is drawn on a sheet of paper which lies on a smooth horizontal table. The paper is pivoted with a pin at ##A## and has moment of inertia ##4ma^2## about a vertical axis through ##A##. An insect of mass ##m## walks around the circle with uniform speed ##2a\Omega## relative to the paper. The angle ##q## turned through by the paper, measured from an initial instant at which the insect passes through ##B## and at which the paper is momentarily at rest, is taken as a generalised co-ordinate; ##p## denotes the corresponding generalised momentum. Show that the lagrangian function for the system is
    $$L = 2ma^2 [(1 + \cos^2 \Omega t)\dot{q}^2 + 2\Omega \dot{q} \cos^2 \Omega t]$$

    2. Relevant equations

    L = T - V

    3. The attempt at a solution
    My set up is shown in a picture below. ##q## is measured from ##AB## to the vertical axis and ##\Omega## is measured from ##AB## to the line connecting the centre of the circle to the mass ##m##. With this, $$x = a \cos \left(\frac{\pi}{2} - q\right) + a \cos\left(\frac{\pi}{2} - (q-\Omega)\right)$$ and similar expression for ##y## are the coordinates of the beetle in this frame. I just wanted to check if my set up is fine and that I have defined the angles ##q## and ##\Omega## correctly as given in the question.
     

    Attached Files:

  2. jcsd
  3. Jan 31, 2015 #2

    TSny

    User Avatar
    Homework Helper
    Gold Member

    Note that q and Ω do not have the same dimensions. So, you can't have (q - Ω) in your last term. Also, did you drop a factor of 2? Note that the speed of the bug relative to the paper is 2aΩ.

    I think you are setting it up OK. When I crank through to get the Lagrangian, I get an opposite sign for the last term in L. But, that might be due to a choice of which direction is positive for defining the angle q.
     
  4. Jan 31, 2015 #3

    CAF123

    User Avatar
    Gold Member

    Ah yes, so define ##2\phi## as the angle from AB to the line connecting to the mass from the centre of the circle. Then ##v_t = a (2\dot{\phi}) = 2a \Omega##, ##v_t## is the tangential velocity of the bug relative to the circle.

    Then the equations for the position of the beetle are $$x = a \sin q + a(\sin q \cos 2\phi - \cos q \sin 2\phi) \,\,;\,\,y = a \cos q + a(\cos q \cos 2\phi - \sin q \sin 2\phi)$$
     
  5. Jan 31, 2015 #4

    TSny

    User Avatar
    Homework Helper
    Gold Member

    OK, but I don't agree with the sign of your last term in y.
     
  6. Feb 1, 2015 #5

    CAF123

    User Avatar
    Gold Member

    Ok I have the lagrangian function now although I have a different sign in the last term which I think you said you also had. The next part of the problem was to derive the Hamiltonian function, which I did (using the Lagrangian given in the question with '+' in last term) and this is $$H(q,p,t) = \frac{(p-4ma^2\Omega \cos^2 \Omega t)^2}{8ma^2(1+\cos^2 \Omega t)} + \text{const}$$ It is a show that, so this is the given answer on sheet too.

    Then write down Hamilton's equations of motion and deduce that by the time the bug reaches A the paper will have turned through an angle ##\frac{1}{2}(\sqrt{2}-1)\pi##.

    Attempt: Hamilton's eqns of motion are $$\dot{q} = \frac{\partial H}{\partial p} = \frac{(p - 4ma^2 \Omega \cos^2 \Omega t)}{4ma^2(1+\cos^2 \Omega t)}$$ and $$\dot{p} = -\frac{\partial H}{\partial q} = 0 \Rightarrow p = \text{const}$$

    So using the first equation I get, $$4ma^2 \int_{q_i}^{q_f} dq = p \int_0^T \frac{1}{1+\cos^2 \Omega t}dt - 4ma^2 \Omega \int_0^T \frac{\cos^2\Omega t }{1+\cos^2\Omega t} dt$$ Now ##\phi = \Omega t## and ##2\phi \in [0,\pi] \Rightarrow \phi \in [0,\pi/2]##. So we have $$4ma^2 \Delta q = \frac{p}{\Omega}\int_0^{\pi/2} \frac{1}{1+\cos^2 \phi} d\phi - 4ma^2\int_0^{\pi/2} \frac{\cos^2 \phi}{1+\cos^2\phi} d\phi$$ My question is how do I eliminate the ##p##?

    Many thanks.
    Edit: I should also point out that in the question we are given the integral $$\int_{0}^{\pi/2} \frac{d\theta}{1+\cos^2 \theta} = \frac{\pi}{2\sqrt{2}}$$
     
  7. Feb 1, 2015 #6

    TSny

    User Avatar
    Homework Helper
    Gold Member

    With the sign conventions that you chose initially for ##q## and ##\Omega##, I get $$H(q,p,t) = \frac{(p+4ma^2\Omega \cos^2 \Omega t)^2}{8ma^2(1+\cos^2 \Omega t)}$$ but I think the sign difference has to do with your choosing q positive in the clockwise direction and ##\Omega## positive in the counterclockwise direction.

    I'm probably making a mistake somewhere, but I'm getting an answer of ##\frac{1}{2\sqrt{2}}(\sqrt{2}-1)\pi## [EDIT: I get this answer if I assume that the bug and paper are both initially at rest and then the bug suddenly starts walking. I get the answer given in the problem if I assume that at t = 0, the paper is at rest but the bug is already in motion. After re-reading the problem I see that the latter interpretation is intended. So, I'm now agreeing with the answer stated in the problem.]
    OK, but due to the sign difference, I get a + in front of the last integral in ##\Delta q##.

    Can you see the physical interpretation of the conserved conjugate momentum ##p##? If so, you should be able to deduce its value. [EDIT: Actually, with the initial conditions as stated in the problem, you can deduce ##p## directly from the relation between ##p## and ##\dot{q}##.]
     
    Last edited: Feb 1, 2015
  8. Feb 1, 2015 #7

    CAF123

    User Avatar
    Gold Member

    Yes, I think I would have got the same, I just used the expression given on the sheet with the sign of the last term flipped.

    I see why the sign changes here given the differences in the sign of the last term in the lagrangian, but wouldn't this give a different numerical answer for ##\Delta q##?

    Yep, since ##p## is constant throughout the motion, evaluate at ##t=0##. This is a point mass moving with angular speed ##\Omega## so that ##I = m(2a)^2\Omega = 4ma^2 \Omega##. Is there any physical insight into why this remains constant though?
     
  9. Feb 1, 2015 #8

    TSny

    User Avatar
    Homework Helper
    Gold Member

    I think the sign changes won't make a difference in the final magnitude of ##\Delta q##, just a difference in overall sign. I believe there will be a sign difference in the value of ##p## that will make up for the sign difference in the Lagrangian.

    You can show that ##p## represents the total angular momentum of the system about point A. The net external torque is zero about A.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Lagrangian function for beetle on paper
  1. Problem on Lagrangian (Replies: 5)

  2. QFT lagrangian (Replies: 1)

Loading...