Lagrangian/Stationary-action principle

  • Thread starter Thread starter Lambda96
  • Start date Start date
  • Tags Tags
    Principle
Click For Summary

Homework Help Overview

The discussion revolves around the application of the Lagrangian and the stationary-action principle in solving differential equations related to motion. Participants are exploring the formulation of the Hamiltonian and the Euler-Lagrange equations, as well as the implications of initial conditions on the solutions.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the formulation of the Hamiltonian and the process of solving for the function ##x(t)##. There is an exploration of the stationary solutions and the implications of initial conditions. Questions arise regarding the integration of expressions and the contributions of specific terms to the equations of motion.

Discussion Status

Some participants have provided guidance on the interpretation of tasks and the formulation of equations. There is an ongoing exploration of the relationships between the Lagrangian, Hamiltonian, and the resulting equations of motion. Multiple interpretations of the tasks are being examined, particularly regarding the integration and application of the Euler-Lagrange equations.

Contextual Notes

Participants note challenges with specific expressions and the need for clarification on the contributions of certain terms in the equations of motion. There is mention of initial conditions and how they affect the derived solutions.

Lambda96
Messages
233
Reaction score
77
Homework Statement
Find a stationary solution
Relevant Equations
Lagrangian ##L=x\dot{x}(2\alpha - \dot{x})##
Hi

the text is unfortunately a bit longer, but I have included it anyway to provide all the information.

Bildschirmfoto 2022-11-29 um 19.17.39.png

I am not sure if I understood the task b correctly, but I understood it as follows: using the equation ##H(x,\dot{x},t)##, solve the differential equation for ##x(t)##.

Once you have found ##x(t)##, you have to use it to find the statin solutions, i.e. form the first derivative of ##x(t)## and set it to 0.

I then first formed ##H(x,\dot{x},t)## and got the following ##H(x,\dot{x},t)=-x\dot{x}^2##

And ##H(x,\dot{x},t)=c## which leads to ##c=-x\dot{x}^2##

After that, I did the separation of variables,

$$\sqrt{x}dx=-\sqrt{c}dt$$

Then I integrated both sides and solved for ##x(t)## and got the following.

$$x(t)=\sqrt[3]{\frac{9}{4}(a-\sqrt{c}*t)^2}$$

##a## is the constant of integration.

Now, to get the stationary solution, I have to form ##\frac{dx(t)}{dt}=0##.

Have I done everything right up to this point, or have I completely misunderstood the task?
 
Last edited:
Physics news on Phys.org
I guess they meant to find the solution of the Euler-Lagrange equations, which makes the "action functional" stationary. I've not checked your calculation in detail, but it looks reasonable.
 
  • Like
Likes   Reactions: Lambda96
Thank you vanhees71 for your help

I then determined the following form with the help of the initial condition ##x(t_i)=0##.

$$x(t)=\frac{9c}{4}^{1/3}(t_i-t)^{1/3}$$

In task c you had to derive the Euler Lagrange equation and put ##x(t)## in there, and with the above result I get 0.

Unfortunately, I can't get any further with task d.

Bildschirmfoto 2022-11-30 um 20.01.15.png

I would have simply calculated the above functional with ##S[x]= \int_{t_i}^{t_f} L(x,\dot{x})dt ## with ##x(t)##, ##\dot{x}(t)## which I got in task b but Q does not appear at all when I solve the integral?
 
I don't understand (d).

Note that the piece
$$\tilde{L}=2 \alpha x \dot{x}=\frac{\mathrm{d}}{\mathrm{d} t} (\alpha x^2).$$
Check, what this term contributes to the equations of motion!
 
  • Like
Likes   Reactions: Lambda96
Thank you vanhees71 for your help 👍

I had already thought of that, that I form the antiderivatives of ##S=2x\dot{x}\alpha-x\dot{x}^2## and just put ##x(t)## there, unfortunately the expression ##x\dot{x}^2## gives me problems, because I can't find the antiderivatives for this expression, even with wolframalpha I can't find any.
 
I wanted to hint you at something else. Think about a Lagrangian of the form
$$L=\frac{\mathrm{d}}{\mathrm{d} t} f(x,t)=\dot{x} \partial_x f(x,t) + \partial_t f(x,t).$$
What are the Euler-Lagrange equations for such a Lagrangian?
 
  • Like
Likes   Reactions: TSny

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
7
Views
3K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
Replies
0
Views
1K