Lagranian:Generalized momentum

  • Thread starter Thread starter rayveldkamp
  • Start date Start date
  • Tags Tags
    Momentum
AI Thread Summary
The discussion centers on the interpretation of generalized momentum derived from the Euler-Lagrange equations, particularly in the context of a relativistic particle in an electromagnetic field. It highlights that while generalized momentum can differ from actual mechanical momentum, the extra term in the generalized momentum, represented as qA, has significant implications. Participants debate the relationship between generalized momentum and mechanical momentum, emphasizing that they are fundamentally different concepts. The conversation also touches on the challenges of defining generalized angular momentum in non-orthogonal configuration spaces. Overall, the complexities of generalized momentum in electromagnetic contexts are underscored, indicating a need for careful consideration of the underlying physics.
rayveldkamp
Messages
60
Reaction score
0
Hi,
I am wondering how to physically interpret the generalized momentum quantity derived from the Euler-Lagrange equations. For some Lagrangians is it equal to the actual momentum for the particle, however i have noticed that for a relativistic particle moving in an electromagnetic field the generalized momentum is not equal to the actual relatvistic momentum.
Could someone explain why this is so, or maybe explain the physical significance of the extra term in the generalized momentum for this EM field case?
Thanks

Ray
 
Physics news on Phys.org
The relativistic particle "couples" or interacts with the free relativistic field and this coupling generates a new term to the momentum. The idea is that the Lagrangian's derivative wrt to the generalized coordinate doesn't have a physical significance, but it has a geometric one.

Daniel.
 
I have a question on this.
As the OP says, the generalized momentum (P_g) of a charge in an electromagnetic field is different from its *mechanical* momentum (P_m). Specifically we find that:
P_g=P_m - qA [1]
where A is the vector potential. This iis the momentum conserved.
However, if we work differently by starting from the Lorentz force, after some calculations (for example following Griffiths), we find that the conserved momentum is:
P_g=P_m + Integral( S dV) [2]
where:
S: Poynting vector
dV: volume

Equations [1] and [2] must be equal, so we conclude:
qA= - Integral( S dV)


Can this be true??
 
The apove post has probably a mistake.
So, can anyone help me with the question *what is the physical meaning of the 'qA'* term?

Thanks in advance!
 
The generalized momentum have no meaning. Can be the angular momentum, the mechanical momentum or just something. The problem is that the generalized coordinate can have units different from length. Depending the generalized coordinate the generalized momentum change. The generalized momentum can be associated with translation in the configuration space, but the momentum is associated with translation in the actual space of the problem.
qA= - Integral( S dV)?
Is not true. In EM the momentum of the wave is associated with the poynting vector, but the vector potential is associated with the generalized momentum of the charged particle. That's two totally different things. never confuse mechanical momentum and generalized momentum, are two totally different things.

Well i want to ask a question here. If the configuration space is isotropic, with have some quantity that is conserved and we can call it the generalized momentum i suppose. The problem is that the generalized coordinates are not orthogonal in general, then i don't know how to rotate the system in configuration space and also i don't know the form that takes the generalized angular momentum. Normally in the discussion of rotation the different text use orthogonal configuration space, but that not always the case. My question is:

Is possible to define the generalized angular momentum for any configuration space in general?
that mean like a qxp or something like that. Well maybe using forms and tangential space. Maybe is impossible because of the arbitrariness of the configuration space.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top