Laplace Transform Finding Open-Circuit Voltage

AI Thread Summary
Modeling a battery's charging and discharging process can be approached using a voltage source in series with a parallel RC branch and a resistor. When measuring open circuit voltage, it may be represented as a simple voltage source in the Laplace transform, particularly if focusing on transient responses. However, for modeling charge and discharge curves, Laplace transforms may not be the best fit due to the non-linear nature of batteries across their operating range. A time domain model could provide more accuracy for such scenarios. Ultimately, the choice of modeling technique depends on the specific questions being addressed and the required precision.
willDavidson
Messages
50
Reaction score
6
TL;DR Summary
I am trying to determine how to represent open circuit voltage during laplace transform
I am interested in modeling a battery charging/discharging. I am starting off with a simple model using a voltage source in series with a parallel RC branch which is in series with a resistor. I will be measuring the open circuit voltage between the last series resistor and the bottom of the source. In the past when I've done Laplace, it was never looking at open circuit voltage but voltage across an element. For this, I'm wondering if I represent the open circuit voltage as a simple voltage source when doing the Laplace transform or is it something more?
 
Engineering news on Phys.org
I should've posted a sample of the circuit schematic. I've attached it here.
 

Attachments

  • battery model.png
    battery model.png
    4.3 KB · Views: 191
The Laplace transform of a constant, say c, is c/s.

But I think really the answer to your question depends on what the model is for. i.e. If you're looking to model the transient response of a system upon battery insert (or removal) I would just use the standard technique of modeling the source as a step function and put your impedance model in series with that source.
 
I don't think the impedance would matter since it's just an open circuit? There's no current. If I got that question on an exam I would likely say the transform is whatever the source is.
 
willDavidson said:
I am interested in modeling a battery charging/discharging. ... For this, I'm wondering if I represent the open circuit voltage as a simple voltage source when doing the Laplace transform or is it something more?

I should've read your question more closely. Because of your description of the independent voltage source and the resistor, etc. I assumed your were looking for the small signal response of the battery so you could asses the stability (or general response) of a circuit while charging, or something, at a given operating point.

If you're just looking to model the charge and discharge curve (i.e. charge stored vs open circuit voltage) then I am not sure Laplace is the right mathematical tool for that. I'm confident one could jury rig a model to make it fit but I think it would be pretty unwieldy. I could be wrong though.

If it was limited to a certain range then it could be linear enough where perhaps you could just model it as a capacitor with an initial condition, and that would work well with Laplace. But over the entire operating range batteries are fairly non-linear which makes me think you're probably going to be best off with a time domain model. It still boils down to what question you're asking of the model and what accuracy you require, as always.

See this link for more information on battery charge curves.

https://www.richtek.com/Design Support/Technical Document/AN024
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top