Laplace Transform of A Second Order ODE

Click For Summary
SUMMARY

The discussion focuses on solving the second-order ordinary differential equation (ODE) y'' + 2y' + y = 4e^(-t) with initial conditions y(0) = 2 and y'(0) = -1 using the Laplace Transform. The transformation yields Y(s) = (2s² + 5s + 7)/[(s + 1)³]. Participants emphasize the necessity of applying Partial Fraction Decomposition to simplify the expression, specifically noting that the correct form involves separating the terms into A/(s + 1), B/(s + 1)², and C/(s + 1)³. The conversation highlights common pitfalls in the decomposition process and clarifies the importance of recognizing repeated linear factors in the denominator.

PREREQUISITES
  • Understanding of Laplace Transforms, specifically L{e^(-t)}.
  • Familiarity with second-order ordinary differential equations (ODEs).
  • Knowledge of Partial Fraction Decomposition techniques.
  • Ability to manipulate algebraic expressions involving polynomials.
NEXT STEPS
  • Study the method of Partial Fraction Decomposition in detail.
  • Practice solving second-order ODEs using Laplace Transforms.
  • Explore the implications of repeated linear factors in polynomial expressions.
  • Review the properties and applications of Laplace Transforms in engineering and physics.
USEFUL FOR

Students, engineers, and mathematicians who are solving differential equations, particularly those using Laplace Transforms for analysis and system modeling.

iismitch55
Messages
11
Reaction score
0
23.) y'' + 2y' + y = 4e-t; y(0) = 2, y'(0) = -1

Y(s) = [(as + b) y(0) + a y'(0) + F(s)]/(as2 + bs + c)

My attempt:

a = 1, b = 2, c = 1

F(s) = 4 L{ e-t } = 4/(s+1) (From Laplace Transform Table)

Plugging and simplifying:

Y(s) = (2s2 + 5s + 7)/[(s + 1)(s2 + 2s + 1)

Here is where I get stuck. I've tried Partial Fraction Decomposition a couple times, with no real luck. The numerator also doesn't factor. I need to get it to match something in my table (sorry I have no way to post it). I do find it peculiar that the denominator is a perfect cube. Any help would be greatly appreciated!
 
Physics news on Phys.org
Have you tried completing the square for the numerator?
 
iismitch55 said:
23.) y'' + 2y' + y = 4e-t; y(0) = 2, y'(0) = -1

Y(s) = [(as + b) y(0) + a y'(0) + F(s)]/(as2 + bs + c)

My attempt:

a = 1, b = 2, c = 1

F(s) = 4 L{ e-t } = 4/(s+1) (From Laplace Transform Table)

Plugging and simplifying:

Y(s) = (2s2 + 5s + 7)/[(s + 1)(s2 + 2s + 1)

Here is where I get stuck. I've tried Partial Fraction Decomposition a couple times, with no real luck. The numerator also doesn't factor. I need to get it to match something in my table (sorry I have no way to post it). I do find it peculiar that the denominator is a perfect cube. Any help would be greatly appreciated!
Assuming your work is correct (I didn't check) the denominator of Y(s) is (s + 1)3. The partial fractions decomposition of ##\frac 1 {(s + 1)^3}## is ##\frac A {s + 1} + \frac B {(s + 1)^2} + \frac C {(s + 1)^3}##.
Edit: Maybe you figured this out already, but the way you wrote the denominator suggested to me that you didn't realize it.

Edit2: Partial fractions is definitely the way to go, and comes out with nice numbers. Show me what you did for the partial fractions work and I'll take a look at it and steer you in the right direction if you have an error.
 
Last edited:
  • Like
Likes   Reactions: iismitch55
Mark44 said:
Assuming your work is correct (I didn't check) the denominator of Y(s) is (s + 1)3. The partial fractions decomposition of ##\frac 1 {(s + 1)^3}## is ##\frac A {s + 1} + \frac B {(s + 1)^2} + \frac C {(s + 1)^3}##.
Edit: Maybe you figured this out already, but the way you wrote the denominator suggested to me that you didn't realize it.

So, which would be the correct way to proceed with partial fractions:

A(s + 1)^2(s + 1)^3 + B(s +1)(s + 1)^3 + C(s + 1)(s + 1)^2 = 2s^2 + 5s + 7

Or

A(s + 1)(s + 1) + B(s +1)(s + 1) + C(s + 1)(s + 1) = 2s^2 + 5s + 7

My PFD is a bit rusty sorry. Method 2 is what I tried before, which yielded the following:

A + B + C = 2
2A + 2B +2C = 5
A + B + C = 7

Which makes no sense. It sounds like method 1 is right, but since I'm rusty I don't know why it would be right. Could you exxplain?
 
iismitch55 said:
So, which would be the correct way to proceed with partial fractions:

A(s + 1)^2(s + 1)^3 + B(s +1)(s + 1)^3 + C(s + 1)(s + 1)^2 = 2s^2 + 5s + 7

Or

A(s + 1)(s + 1) + B(s +1)(s + 1) + C(s + 1)(s + 1) = 2s^2 + 5s + 7
Neither of these.

You have $$\frac {2s^2 + 5s + 7}{(s + 1)^3} = \frac A {s + 1} + \frac B {(s + 1)^2} + \frac C {(s + 1)^3}$$

Multiply both sides of this equation by (s + 1)3. You should end up with a quadratic on each side of the equation.
iismitch55 said:
My PFD is a bit rusty sorry. Method 2 is what I tried before, which yielded the following:

A + B + C = 2
2A + 2B +2C = 5
A + B + C = 7

Which makes no sense. It sounds like method 1 is right, but since I'm rusty I don't know why it would be right. Could you exxplain?
 
Mark44 said:
Neither of these.

You have $$\frac {2s^2 + 5s + 7}{(s + 1)^3} = \frac A {s + 1} + \frac B {(s + 1)^2} + \frac C {(s + 1)^3}$$

Multiply both sides of this equation by (s + 1)3. You should end up with a quadratic on each side of the equation.

Thanks, I will give this a shot. Could you tell me why the denominator breaks up this way rather than (s + 1) each denominator?
 
iismitch55 said:
Thanks, I will give this a shot. Could you tell me why the denominator breaks up this way rather than (s + 1) each denominator?
That's just the way it works when you have repeated linear factors. Off the top of my head I don't know why that works, but I know that writing A/(s + 1) + B/(s + 1) + C/(s + 1) doesn't work. That would be the same as (A + B + C)/(s + 1), which you could simplify to D/(s + 1).
 
Mark44 said:
That's just the way it works when you have repeated linear factors. Off the top of my head I don't know why that works, but I know that writing A/(s + 1) + B/(s + 1) + C/(s + 1) doesn't work. That would be the same as (A + B + C)/(s + 1), which you could simplify to D/(s + 1).

Can confirm, tried, doesn't work. Thank you for all your help!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K