Laplace transform of the multiplication of two functions

Click For Summary
The discussion centers on finding the Laplace transform of the product of two functions, ##\phi(t)=\cos(\omega t)## and ##f(t)=u(t)−u(t−k)##, where ##f(t)## is periodic. The user encounters difficulties with convolution in the frequency domain due to gamma functions and mismatched limits. They also consider integration by parts but struggle with the undefined nature of a periodic function at infinity. A suggested approach involves expressing the integral over periodic intervals and applying the definition of the Laplace transform directly. The conversation emphasizes returning to foundational principles rather than relying solely on reference materials.
Debdut
Messages
18
Reaction score
2
I have two functions ##\phi(t)=\cos(\omega t)## and ##f(t)=u(t)−u(t−k)## with ##f(t)=f(t+T)##, ##u(t)## is the unit step function.
The problem is to find Laplace transform of ##\phi(t) \cdot f(t)##.

I have tried convolution in frequency domain, but unable to solve it because of gamma functions. Also a doubt is arising about the limits of the convolution. Laplace transform of multiplication of simple functions and convolution of their individual transforms are not matching when taking limits like ##0 \rightarrow s## or ##s \rightarrow \infty## or ##0 \rightarrow \infty##.

I have also thought about integration by parts of ##\phi(t)f(t)e^{−st}## as its limits are known: ##0 \rightarrow \infty##. But value of a periodic function at infinity is undefined.

I am stuck, please help...

<Moderator's note: Member has been warned not to remove template.>
 
Last edited by a moderator:
Physics news on Phys.org
Debdut said:
I have two functions ##\phi(t)=\cos(\omega t)## and ##f(t)=u(t)−u(t−k)## with ##f(t)=f(t+T)##, ##u(t)## is the unit step function.
The problem is to find Laplace transform of ##\phi(t) \cdot f(t)##.

I have tried convolution in frequency domain, but unable to solve it because of gamma functions. Also a doubt is arising about the limits of the convolution. Laplace transform of multiplication of simple functions and convolution of their individual transforms are not matching when taking limits like ##0 \rightarrow s## or ##s \rightarrow \infty## or ##0 \rightarrow \infty##.

I have also thought about integration by parts of ##\phi(t)f(t)e^{−st}## as its limits are known: ##0 \rightarrow \infty##. But value of a periodic function at infinity is undefined.

I am stuck, please help...

<Moderator's note: Member has been warned not to remove template.>

Assuming that ##T > k## the problem is do-able. Here is one way to do it.

Your transform has the form
$$ \sum_{n=0}^{\infty} \int_0^k e^{-s(t+nT)} \cos(wt+nT)) \, dt $$
Expand the ##\cos(wt +n w T)## and then do the integrations.
 
Last edited:
Thank you very much sir.
I must say that I don't fully understand the above expression. The only formulae that I have got are from this site:
http://tutorial.math.lamar.edu/pdf/Laplace_Table.pdf
Could you please offer some explanation or redirect me to any reference where I can learn it more?
 
Debdut said:
Thank you very much sir.
I must say that I don't fully understand the above expression. The only formulae that I have got are from this site:
http://tutorial.math.lamar.edu/pdf/Laplace_Table.pdf
Could you please offer some explanation or redirect me to any reference where I can learn it more?

Just apply the definition of the Laplace transform: ##\int_0^{\infty} e^{-st} F(t) \, dt##. Now use the fact that ##F(t)## is the product of a periodic (period ##T##) "rectangular" function of width ##k## and ##\cos(wt)##. Express the integrals over ##T < t < 2T, 2T < t < 3T, \ldots## as integrals over ##0 < t < T## with shifted values of ##t##.

Reading about Laplace transforms won't help much; just go back to the start and apply the definition.
 
  • Like
Likes Debdut
OK, thank you again.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K