Learning DEs: Solving 2nd Order Differential Equations

AI Thread Summary
To solve the second-order differential equation derived from Newton's second law, x'' = F/m, one can integrate the equation twice to obtain the equation of motion. The first integration gives the velocity function, and the second integration leads to the position function, x(t). This approach simplifies the process compared to more complex methods often found in textbooks. The discussion highlights that the initial confusion stemmed from the focus on homogeneous equations rather than applying basic integration techniques. Ultimately, integrating twice provides a straightforward solution to the problem.
greg_rack
Gold Member
Messages
361
Reaction score
79
Hi guys,

I have just started studying DEs on my own, so pardonne moi in advance for the probably silly question :)

Via Newton's second law of motion:
$$x''=\frac{F}{m} \ [1]$$
Which is a second-order differential equation.
But, from here, how do I get the good old equation of motion:
$$x(t)=\frac{F}{2m}t^2+vt+x$$
by solving the DE? What is the procedure to apply? In my textbook, only second-order homogeneous DE are treated, but nothing with the form of ##[1]##... and online everything looks over-complicated.
 
Physics news on Phys.org
Ok, I managed to get to the solution just by integrating twice both sides.
I was wrapping my head for nothing!
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top