DMTN
- 1
- 0
AFAIK, there are two basic type of linear regression:
y=ax+b and y=a2 + bx + c
But I have to do the same with the function y = asin(x)+bcos(x).
Here is what I have done:
We have:
<br /> \begin{array}{l}<br /> \frac{{\partial L}}{{\partial a}} = 0 <br /> <br /> \frac{{\partial L}}{{\partial b}} = 0Continue:
<br /> \begin{array}{l}<br /> \frac{{\partial L}}{{\partial a}} = \sum\limits_{i = 1}^n {2\left[ {fi - \left( {a\sin (\frac{{\pi x}}{2}) + b\cos (\frac{{\pi x}}{2})} \right)} \right]\left( { - \sin (\frac{{\pi x}}{2})} \right)}<br /> \frac{{\partial L}}{{\partial b}} = \sum\limits_{i = 1}^n {2\left[ {fi - \left( {a\sin (\frac{{\pi x}}{2}) + b\cos (\frac{{\pi x}}{2})} \right)} \right]\left( {\cos (\frac{{\pi x}}{2})} \right)}<br /> \end{array}
At last, I have:
<br /> \left( {\begin{array}{*{20}c}<br /> {\sin ^2 \left( {\frac{{\pi x}}{2}} \right)} & {\sin \left( {\frac{{\pi x}}{2}} \right)\cos \left( {\frac{{\pi x}}{2}} \right)} \\<br /> {\sin \left( {\frac{{\pi x}}{2}} \right)\cos \left( {\frac{{\pi x}}{2}} \right)} & {\cos ^2 \left( {\frac{{\pi x}}{2}} \right)} \\<br /> \end{array}} \right)\left( \begin{array}{l}<br /> a \\ <br /> b \\ <br /> \end{array} \right) = \left( \begin{array}{l}<br /> fi\sin \left( {\frac{{\pi x}}{2}} \right) \\ <br /> fi\cos \left( {\frac{{\pi x}}{2}} \right) \\ <br /> \end{array} \right)<br />
What I have to do now? Please suggest me with this situation.
y=ax+b and y=a2 + bx + c
But I have to do the same with the function y = asin(x)+bcos(x).
Here is what I have done:
We have:
<br /> \begin{array}{l}<br /> \frac{{\partial L}}{{\partial a}} = 0 <br /> <br /> \frac{{\partial L}}{{\partial b}} = 0Continue:
<br /> \begin{array}{l}<br /> \frac{{\partial L}}{{\partial a}} = \sum\limits_{i = 1}^n {2\left[ {fi - \left( {a\sin (\frac{{\pi x}}{2}) + b\cos (\frac{{\pi x}}{2})} \right)} \right]\left( { - \sin (\frac{{\pi x}}{2})} \right)}<br /> \frac{{\partial L}}{{\partial b}} = \sum\limits_{i = 1}^n {2\left[ {fi - \left( {a\sin (\frac{{\pi x}}{2}) + b\cos (\frac{{\pi x}}{2})} \right)} \right]\left( {\cos (\frac{{\pi x}}{2})} \right)}<br /> \end{array}
At last, I have:
<br /> \left( {\begin{array}{*{20}c}<br /> {\sin ^2 \left( {\frac{{\pi x}}{2}} \right)} & {\sin \left( {\frac{{\pi x}}{2}} \right)\cos \left( {\frac{{\pi x}}{2}} \right)} \\<br /> {\sin \left( {\frac{{\pi x}}{2}} \right)\cos \left( {\frac{{\pi x}}{2}} \right)} & {\cos ^2 \left( {\frac{{\pi x}}{2}} \right)} \\<br /> \end{array}} \right)\left( \begin{array}{l}<br /> a \\ <br /> b \\ <br /> \end{array} \right) = \left( \begin{array}{l}<br /> fi\sin \left( {\frac{{\pi x}}{2}} \right) \\ <br /> fi\cos \left( {\frac{{\pi x}}{2}} \right) \\ <br /> \end{array} \right)<br />
What I have to do now? Please suggest me with this situation.