Levi-Civita properties in 4 dimensions

Click For Summary
SUMMARY

The discussion focuses on the properties of the Levi-Civita symbol in four dimensions, specifically the identities involving the product of Levi-Civita symbols. The user demonstrates that the identity $$\epsilon_{ijkl}\epsilon_{ijmn}=2!(\delta_{km}\delta_{ln}-\delta_{kn}\delta_{lm})$$ is not yielding the expected results, leading to questions about potential errors in the statement. Additionally, the user successfully proves that $$\epsilon_{ijkl}\epsilon_{ijkm}=3!\delta_{lm}$$ using their derived expression, confirming the validity of the identity with a clear mathematical derivation.

PREREQUISITES
  • Understanding of tensor notation and indices
  • Familiarity with the Levi-Civita symbol and its properties
  • Knowledge of Kronecker delta notation
  • Basic skills in mathematical proofs and algebraic manipulation
NEXT STEPS
  • Study the properties of the Levi-Civita symbol in higher dimensions
  • Learn about tensor calculus and its applications in physics
  • Explore the implications of the Kronecker delta in tensor operations
  • Investigate the role of the Levi-Civita symbol in differential geometry
USEFUL FOR

Mathematicians, physicists, and students studying advanced topics in linear algebra and tensor analysis, particularly those interested in the applications of the Levi-Civita symbol in theoretical physics.

Phys pilot
Messages
28
Reaction score
0
first of all english is not my mother tongue sorry. I want to ask if you can help me with some of the properties of the levi-civita symbol.

I am showing that

$$\epsilon_{ijkl}\epsilon_{ijmn}=2!(\delta_{km}\delta_{ln}-\delta_{kn}\delta_{lm})$$

so i have this...

$$\epsilon_{ijkl}\epsilon_{ijmn}=\delta_{ii}\delta_{jj}\delta_{km}\delta_{ln}+\delta_{ij}\delta_{jm}\delta_{kn}\delta_{li}+\delta_{im}\delta_{jn}\delta_{ki}\delta_{lj}+\delta_{in}\delta_{ji}\delta_{kj}\delta_{lm}-\delta_{ii}\delta_{jn}\delta_{km}\delta_{lj}-\delta_{in}\delta_{jm}\delta_{kj}\delta_{li}-\delta_{im}\delta_{jj}\delta_{ki}\delta_{ln}-\delta_{ij}\delta_{ji}\delta_{kn}\delta_{lm}=3^2\delta_{km}\delta_{ln}+\delta_{kn}\delta_{lm}+\delta_{km}\delta_{ln}+\delta_{kn}\delta_{lm}-3\delta_{km}\delta_{ln}-\delta_{km}\delta_{ln}-3\delta_{km}\delta_{ln}-3\delta_{kn}\delta_{lm}=3\delta_{km}\delta_{ln}-3\delta_{kn}\delta_{lm}=3(\delta_{km}\delta_{ln}-\delta_{kn}\delta_{lm})$$

which is not equal to the supposedly correct answer. can the statement be wrong?
if not i can't see my error.

Also i need to prove that:

$$\epsilon_{ijkl}\epsilon_{ijkm}=3!\delta_{lm}$$
i know and i proved that
$$\epsilon_{ijkl}\epsilon_{ijkl}=24=4!$$
so if $l=m$ i have this
$$\epsilon_{ijkl}\epsilon_{ijkl}=3!\delta_{ll}=3!\cdot 3=18$$
which is not equal to 4!=24 so its the statement wrong again? it must be
$$\epsilon_{ijkl}\epsilon_{ijkm}=8\delta_{lm} $$
Actually i proved that:
$$\epsilon_{ijkl}\epsilon_{ijkm}=\delta_{ii}\delta_{jj}\delta_{kk}\delta_{lm}+\delta_{ij}\delta_{jk}\delta_{km}\delta_{li}+\delta_{ik}\delta_{jm}\delta_{ki}\delta_{lj}+\delta_{im}\delta_{ji}\delta_{kj}\delta_{lk}-\delta_{ii}\delta_{jm}\delta_{kk}\delta_{lj}-\delta_{im}\delta_{jk}\delta_{kj}\delta_{li}-\delta_{ik}\delta_{jj}\delta_{ki}\delta_{lm}-\delta_{ij}\delta_{ji}\delta_{km}\delta_{lk}=3^3\delta_{lm}+\delta_{ik}\delta_{km}\delta_{li}+\delta_{ii}\delta_{lj}\delta_{jm}+\delta_{jm}\delta_{kj}\delta_{lk}-3^2\delta_{lm}-\delta_{jj}\delta_{li}\delta_{im}-3\delta_{ii}\delta_{lm}-\delta_{ii}\delta_{lm}=3^3\delta_{lm}+\delta_{lk}\delta_{km}+\delta_{ii}\delta_{lm}+\delta_{lj}\delta_{jm}-3^2\delta_{lm}-3\delta_{lm}-3^2\delta_{lm}-3\delta_{lm}=3^3\delta_{lm}+\delta_{lm}+3\delta_{lm}+\delta_{lm}-3^2\delta_{lm}-3\delta_{lm}-3^2\delta_{lm}-3\delta_{lm}=8\delta_{lm} $$
Even more if i use my solution:

$$\epsilon_{ijkl}\epsilon_{ijmn}=3(\delta_{km}\delta_{ln}-\delta_{kn}\delta_{lm})$$
to prove
$$\epsilon_{ijkl}\epsilon_{ijkm}=3!\delta_{lm}$$
using $m=k$ and $n=m$ i have this
$$3(\delta_{km}\delta_{ln}-\delta_{kn}\delta_{lm})$$
$$3(\delta_{kk}\delta_{lm}-\delta_{km}\delta_{lk})$$
$$3(3\delta_{lm}-\delta_{lm})$$
$$3(2\delta_{lm})$$
$$6(\delta_{lm})=3!(\delta_{lm})$$
 
Physics news on Phys.org

Similar threads

  • · Replies 6 ·
Replies
6
Views
8K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
Replies
1
Views
7K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
29K
  • · Replies 3 ·
Replies
3
Views
7K