an update
i have converted my rectifier into a 3-stage voltage multiplier:
https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-snc7/485865_10150964175476197_502061196_11701521_952416425_n.jpg
as per
http://www.celnav.de/hv/hv9.htm, it is the floating center Y design with 5 phases instead of three (notice the 3 'rectifier pentagrams')
this is just a straight voltage multiplication that makes no use of the inductive properties of the alternator, but the high voltage output should enable some form of automated shorting between the phases to drive the inductive voltage spiking, and by consistently shorting it only at the inter-phase voltage maxima, and unshorting it only at the voltage minima , more energy should be able to be harnessed, as opposed to wasted as current flow dissipating into heat
i think the way it works is that every coil is induced by the rotation of the magnets to an opposite EMF to the adjacent coils
hence , say that phase A and B , at an instant, are nearing their positive and negative minima respectively, hence develop a maximum voltage difference between them
upon shorting them at this instant, the sudden resistance drop causes and equally sudden current spike, which causes a strong magnetic field (which opposes the rotation of the magnets) to be suddenly formed...
the sudden increase in magnetic flux would induce the neighbouring coils/phases, E and C, to have an EMF which makes current in them flow the opposite way, and since the coils are all wound identically, this causes them to develop a stronger negative and positive voltage , respectively, and this is what is measured as the voltage spike
during the high current in A and B , the EMF which they induce would tend to oppose their own currents , but this would be somewhat countered by the still-changing magnetic field caused by the rotating magnets, hence keeping the current flowing longer and more magnetic energy to be transferred to E and C ... this would be the primary way of harnessing more energy out of the rotation of the magnets
suppose that the coils are induced in an 'alphabet-wise' manner, C would next be induced to create the next high-voltage pair between B and C , so the current that it has set up will start opposing opposing the rotation of the magnets, while E will be in a region of no magnetic induction, so its energy will simply contribute to the electrical output
and when it comes time to un-short the phases, the opposite would happen, the 'braking' effect on A and B ceases, but not only that, the sudden drop in current in A and B would induce C to have currents of its own which actually drives the rotor to spin faster, wasting the stored energy that way ...
hence, it is best to un-short the phases when the voltage difference between phases reaches the minimum within the cycle
if the time frame of the short-induction is quicker than that of the magnetic induction, then the short can be triggered every cycle ... but if it is slower, then the short should not be triggered until the magnetic induction comes back into effect
in any case, this would need to be electronically controlled, using electronics powered by boosted voltage out of the voltage multiplier, maybe a 555 chip along with diodes and transistors
then again, I am not really sure about any of what I've just said...