Lie algebras assignments

  • Thread starter Pivych
  • Start date
  • #1
1
0
I need to solve two assignments in Lie algebras. These assignments are not very difficult, but my knowledges in Lie algebras aren't good.
1. Let [tex]\delta[/tex] be a derivation of the Lie algebra [tex]\Im[/tex]. Show that if [tex]\delta[/tex] commutes with every inner derivation, then [tex]\delta[/tex]([tex]\Im[/tex])[tex]\subseteq[/tex]C([tex]\Im[/tex]), where C([tex]\Im[/tex]) denotes the centre of [tex]\Im[/tex] .

2. Let x [tex]\in[/tex] gl(n,F) have n distinct eigenvalues [tex]\lambda[/tex]1..[tex]\lambda[/tex]n in F. Prove that eigenvalues of ad[tex]_{}x[/tex] are the n[tex]^{}2[/tex] scalars [tex]\lambda[/tex][tex]_{}i[/tex]-[tex]\lambda[/tex][tex]_{}j[/tex] (1[tex]\leq[/tex]i,j[tex]\leq[/tex]n)

Your prompt reply will be highly appreciated
 
Last edited:

Answers and Replies

  • #2
160
2
1. Let [tex]\delta[/tex] be a derivation of the Lie algebra [tex]\Im[/tex]. Show that if [tex]\delta[/tex] commutes with every inner derivation, then [tex]\delta[/tex]([tex]\Im[/tex])[tex]\subseteq[/tex]C([tex]\Im[/tex]), where C([tex]\Im[/tex]) denotes the centre of [tex]\Im[/tex] .
You need to show that for all x and y, [tex]\delta(x)[/tex] commutes with y, i.e. [tex][y,\delta(x)]=0[/tex]. What's a central derivation? Can you rewite the condition using one?

2. Let x [tex]\in[/tex] gl(n,F) have n distinct eigenvalues [tex]\lambda[/tex]1..[tex]\lambda[/tex]n in F. Prove that eigenvalues of ad[tex]_{}x[/tex] are the n[tex]^{}2[/tex] scalars [tex]\lambda[/tex][tex]_{}i[/tex]-[tex]\lambda[/tex][tex]_{}j[/tex] (1[tex]\leq[/tex]i,j[tex]\leq[/tex]n)

x is an matrix, its eigenvectors are vectors in Fn. The map adx acts on elements of the LA, i.e. matrices over F. So its eigenvectors are matrices, and you can construct them directly. Try to think of ways to construct matrices from vectors.
 

Related Threads on Lie algebras assignments

  • Last Post
Replies
8
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
9
Views
6K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
5
Views
2K
Replies
1
Views
598
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
2
Views
2K
Top