Light Ray deflection in Nordstrom's theory of gravity....

Click For Summary
SUMMARY

This discussion centers on the analysis of light ray deflection in Nordstrom's theory of gravity, which utilizes the metric $$\tilde{g}_{\mu \nu} = \exp(-2 \Phi / c^{2}) \eta_{\mu \nu}$$. The key conclusion is that light rays in this theory do not experience deflection due to gravity, while massive particles do. The geodesic equation is employed to demonstrate this behavior, with the Christoffel symbols derived from the relationship between the metrics. The participant seeks guidance on utilizing geodesic parameterization to confirm the absence of deflection for light rays.

PREREQUISITES
  • Understanding of General Relativity principles
  • Familiarity with differential geometry concepts
  • Knowledge of geodesic equations and Christoffel symbols
  • Basic grasp of scalar fields and metrics in physics
NEXT STEPS
  • Study the derivation of geodesic equations in General Relativity
  • Learn about the implications of Nordstrom's theory of gravity
  • Explore the concept of geodesic parameterization in detail
  • Investigate the mathematical treatment of light rays in curved spacetime
USEFUL FOR

Students of physics, particularly those studying General Relativity, researchers in theoretical physics, and anyone interested in the mathematical foundations of gravity theories.

JOliver
Messages
1
Reaction score
0
Hi, firstly I wanted to say thankyou for this forum, its provided me with a lot of help over the years and now it has come to that dreaded question that can not seem to poke at at all. I'm in my 4th year and taking General Relativity for the first time, with a hap-dash differential geometry "intro" in the middle of it. Whilst I have been working at GR to get the intuition down-packed, I must admit I am lacking the physical interpretation of many of these equations.

Okay so :


1. Homework Statement

Nordstrom's theory of gravity has a metric

$$\tilde{g}_{\mu \nu} = \exp( -2 \Phi / c^{2}) \eta_{\mu \nu}$$
where ##\eta_{\mu \nu}## is the Minkowski metric and ##\Phi## is a scalar field. By considering geodesic reparameterisations, show that light rays in Nordstrom's theory follow the same lines in the flat space, i.e they are not deflected by gravity, whereas massive particles are deflected.

In the previous section of the question we are asked to prove the corresponding Christoffel symbols ## \Gamma^{\lambda}_{\mu \nu}## and ##\tilde{\Gamma}^{\lambda}_{\mu \nu}## between ##g_{\mu \nu}## and ##\tilde{g}_{\mu \nu}##. Where

$$ \tilde{g}_{\mu \nu} = \Omega^{2} g_{\mu \nu}$$

now, clearly for Nordstrom's theory of gravity ## \Omega = \exp(- \Phi / c^{2})##

The relation I arrived at was :

$$ \tilde{\Gamma}^{\alpha}_{\mu \beta} = \Gamma^{\alpha}_{\mu \beta} + C^{\alpha}_{\mu \beta}$$

Where

$$ C^{\alpha}_{\mu \beta} = \frac{1}{\Omega} \left[ \partial_{\mu}(\Omega) \delta^{\alpha}_{\beta} + \partial_{\beta}(\Omega) \delta^{\alpha}_{\mu} - \partial_{\lambda}(\Omega) g^{\alpha \lambda} g_{\mu \beta} \right] $$

Homework Equations


So, the question asks us, that via Geodesic reparameterisations, show that the light rays in Nordstrom's theory follow the same lines as in flat space.

One looks to the geodesic equation (perhaps niavely)

$$ \frac{d^{2} x^{\alpha}}{d \lambda^{2}} + \tilde{\Gamma}^{\alpha}_{\mu\beta} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\mu}}{\partial \lambda}=0$$

The Attempt at a Solution


The Previous sections have had aspects of my attempt in them, though I will dot point my solution up until I lose the scent.

1) State metric

$$ \tilde{g}_{\mu \nu} = \Omega^{2} \eta_{\mu \nu}$$

2) The connection

$$ \tilde{\Gamma}^{\alpha}_{\mu \beta} = \Gamma^{\alpha}_{\mu \beta} + C^{\alpha}_{\mu \beta}$$

The connection ##\Gamma^{\alpha}_{\mu \beta}## for flat space time, is zero. Thus we neglect it.

3) The scalar field for Nordstroms theory

$$\Omega = \exp(- \Phi / c^{2}) $$

4) The geodesics Equation

$$ \frac{d^{2} x^{\alpha}}{d \lambda^{2}} + \tilde{\Gamma}^{\alpha}_{\mu\beta} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\mu}}{\partial \lambda} =0$$

$$ \frac{d^{2} x^{\alpha}}{d \lambda^{2}}+\left( \Gamma^{\alpha}_{\mu \beta}+C^{\alpha}_{\mu \beta}\right) \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\mu}}{\partial \lambda} =0$$

5) Simplification

$$ \frac{d^{2} x^{\alpha}}{d \lambda^{2}}+C^{\alpha}_{\mu \beta}\frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\mu}}{\partial \lambda} =0$$

6) Detirmination of ## C^{\alpha}_{\mu \beta} ## for Nordstrom's metric.

$$ C^{\alpha}_{\mu \beta} = \frac{1}{\Omega} \left[ \partial_{\mu}(\Omega) \delta^{\alpha}_{\beta} + \partial_{\beta}(\Omega) \delta^{\alpha}_{\mu} - \partial_{\lambda}(\Omega) g^{\alpha \lambda} g_{\mu \beta} \right] $$

Recalling

$$ \Omega = \exp(- \Phi / c^{2}) $$

we find ## C^{\alpha}_{\mu \beta}## to be :

$$C^{\alpha}_{\mu \beta} = \left[ - \frac{\partial_{\mu} \Phi }{c^{2}} \delta^{\alpha}_{\beta} - \frac{\partial_{\beta} \Phi}{c^{2}} \delta^{\alpha}_{\mu} + \frac{\partial_{\lambda} \Phi}{c^{2}} g^{\alpha \lambda} g_{\mu \beta} \right] $$

7) Substitution into the second term in the geodesic equation :

$$ C^{\alpha}_{\mu \beta} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\beta}}{\partial \lambda} = - -\frac{ \partial_{\mu} \Phi}{c^{2}} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\alpha}}{\partial \lambda} - \frac{ \partial_{\beta} \Phi}{c^{2}} \frac{\partial x^{\alpha}}{\partial \lambda} \frac{\partial x^{\beta}}{\partial \lambda} + \frac{\partial_{\lambda}\Phi}{c^{2}} \frac{\partial x_{\beta}}{\partial \lambda} \frac{\partial x^{\beta}}{\partial \lambda} g^{\alpha \lambda} $$

we then group terms and use ## \frac{\partial x^{\mu}}{\partial \lambda} = p^{\mu} ##.

$$ C^{\alpha}_{\mu \beta} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\beta}}{\partial \lambda} = -\frac{2 \partial_{\mu} \Phi}{c^{2}} p^{\mu} p^{\alpha} + \frac{\partial_{\lambda}\Phi}{c^{2}} p^{2} g^{\alpha \lambda} $$

Giving the Geodesic equation :

$$ \frac{\partial^{2} x^{\alpha}}{\partial \lambda^{2}} -\frac{2 \partial_{\mu} \Phi}{c^{2}} p^{\mu} p^{\alpha} + \frac{\partial_{\lambda}\Phi}{c^{2}} p^{2} g^{\alpha \lambda} = 0 $$

8) ## p^{2} = m^{2}## For the light ray :

$$ \frac{\partial^{2} x^{\alpha}}{\partial \lambda^{2}} -\frac{2 \partial_{\mu} \Phi}{c^{2}} p^{\mu} p^{\alpha} + \underbrace{\frac{\partial_{\lambda}\Phi}{c^{2}} p^{2} g^{\alpha \lambda}}_{=0} = 0 $$

$$ \frac{\partial p^{\alpha}}{\partial \lambda} -\frac{2 \partial_{\mu} \Phi}{c^{2}} p^{\mu} p^{\alpha} = 0 $$
Now at this point the concept of geodesic parameterization comes in :

I know:

$$\frac{d^{2} x^{\mu}}{d \alpha^{2}} + \Gamma^{\mu}_{\rho \sigma} \frac{d x^{\rho}}{d \alpha} \frac{d x^{\sigma}}{d \alpha} = f(\alpha) \frac{d x^{\mu}}{d \alpha} $$

for some parameter ##\alpha(\lambda)##, where ##f(\lambda)## is related to the affine parameter via :

$$ f(\alpha) = - \left( \frac{d^{2} \alpha}{d \lambda^{2}}\right) \left( \frac{d \alpha}{d \lambda}\right)^{-2}$$

I had the thought that perhaps

$$-\frac{2 \partial_{\mu} \Phi}{c^{2}} p^{\mu} = f(\alpha) $$.

but then I'm not entirely sure what this gets me. So to summarise this question. Given that I have arrived at the point I have, what steps must I take to

1) use geodesic parameterization and

2) show that the deflection of the light ray is zero. (as in, how will i know that the deflection is zero).

I feel like I am almost there - I must be missing something obvious.

I hope I have been clear in my description of the question and working out,

Thanks for your guidance
 
Physics news on Phys.org
Hi J, I note the lack of response to your issue. There seems to be a lot of editorializing in your question and wonder if you could restate the question so as to allow a response. For example you force a respondent to accept the use of geodesic parameterization, meaning that you should be able to identify an effective degree of freedom of your geo "object" Perhaps you should consider that Nordstrom's Theory of Gravity is not a 'object' at all but is akin to a 'process' and approach your work from that vantage point. Parameterization would still work on a process or system as well as upon an object.
 
Hi JOliver,

I can't answer your question, but this link might help.



Cheers.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
2K
Replies
0
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K